$$v_{\text{ave}} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v(t) \, dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} s'(t) \, dt$$

$$= \frac{1}{t_2 - t_1} [s(t_2) - s(t_1)] \qquad \text{(by the Total Change Theorem)}$$

$$= \frac{s(t_2) - s(t_1)}{t_2 - t_1} = \text{average velocity}$$

6.5

Exercises

1-8. Find the average value of the function on the given interval.

1.
$$f(x) = x^2$$
, $[-1, 1]$

2.
$$f(x) = 1/x$$
, [1, 4]

3.
$$g(x) = \cos x$$
, $[0, \pi/2]$

4.
$$g(x) = \sqrt{x}$$
, [1, 4]

5.
$$f(t) = te^{-t^2}$$
, $[0, 5]$

6.
$$f(\theta) = \sec \theta \tan \theta$$
, $[0, \pi/4]$

7.
$$h(x) = \cos^4 x \sin x$$
, [0, π]

8.
$$h(r) = 3/(1+r)^2$$
, [1, 6]

9–12 □

(a) Find the average value of f on the given interval.

(b) Find c such that
$$f_{ave} = f(c)$$
.

(c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

9.
$$f(x) = 4 - x^2$$
, [0, 2]

10.
$$f(x) = e^x$$
, [0, 2]

11.
$$f(x) = x^3 - x + 1$$
, $[0, 2]$

12.
$$f(x) = x \sin(x^2)$$
; $[0, \sqrt{\pi}]$

- **13.** If f is continuous and $\int_1^3 f(x) dx = 8$, show that f takes on the value 4 at least once on the interval [1, 3].
- **14.** Find the numbers b such that the average value of $f(x) = 2 + 6x 3x^2$ on the interval [0, b] is equal to 3.
- **15.** In a certain city the temperature (in ${}^{\circ}F$) t hours after 9 A.M. was approximated by the function

$$T(t) = 50 + 14\sin\frac{\pi t}{12}$$

Find the average temperature during the period from 9 A.M. to 9 P.M.

16. The temperature of a metal rod, 5 m long, is 4x (in °C) at a distance x meters from one end of the rod. What is the average temperature of the rod?

C

- 17. The linear density in a rod 8 m long is $12/\sqrt{x+1}$ kg/m, where x is measured in meters from one end of the rod. Find the average density of the rod.
- **18.** If a freely falling body starts from rest, then its displacement is given by $s = \frac{1}{2}gt^2$. Let the velocity after a time T be v_T . Show that if we compute the average of the velocities with respect to t we get $v_{\text{ave}} = \frac{1}{2}v_T$, but if we compute the average of the velocities with respect to s we get $v_{\text{ave}} = \frac{2}{3}v_T$.
- **19.** Use the result of Exercise 75 in Section 5.5 to compute the average volume of inhaled air in the lungs in one respiratory cycle.
- **20.** The velocity v of blood that flows in a blood vessel with radius R and length l at a distance r from the central axis is

$$v(r) = \frac{P}{4\eta l} (R^2 - r^2)$$

where P is the pressure difference between the ends of the vessel and η is the viscosity of the blood (see Example 7 in Section 3.3). Find the average velocity (with respect to r) over the interval $0 \le r \le R$. Compare the average velocity with the maximum velocity.

- **21.** Prove the Mean Value Theorem for Integrals by applying the Mean Value Theorem for derivatives (see Section 4.2) to the function $F(x) = \int_{a}^{x} f(t) dt$.
- **22.** If $f_{ave}[a, b]$ denotes the average value of f on the interval [a, b] and a < c < b, show that

$$f_{\text{ave}}[a,b] = \frac{c-a}{b-a} f_{\text{ave}}[a,c] + \frac{b-c}{b-a} f_{\text{ave}}[c,b]$$