
Section 1 
 

1. a. 1! 2! 3! 4! 5!
0! 1! 2! 3! 4!

, , , , , which simplifies to 1, 2, 3, 4, 5 

 b. Because of the n in the denominator, we must start with n = 1. 

  
cos( ) cos(2 ) cos(3 ) cos(4 ) cos(5 )

1 2 3 4 5
, , , ,

π π π π π
, which simplifies to 1 1 1 1

2 3 4 5
1, , , ,− −−  

 c. 0 0  is undefined, so we start with n = 1. 

  1 2 3 4 51, 2, 3, 4, 5  

 d. Since ln(0) is undefined, we must start with an n-value that makes the inner logarithm non-zero. 

The smallest n-value that does the job is n = 2. 

  ln(ln 2), ln(ln 3), ln(ln 4), ln(ln 5), ln(ln 6) 

 e. 
0 1 2 3 4

1 2 3 4 5

3 3 3 3 3

4 4 4 4 4
, , , , , which simplifies to 3 9 27 811

4 16 64 256 1024
, , , ,  

2. Answers may vary, depending on indexing. Here are possibilities. 

 a. 2
n

a n= , n starting at 1 

 b. 
1( 1)

!

n

n n
a

+−
= , n starting at 0 

 c. n

n
a n= , n starting at 1 

3. The sequence in 1b converges to 0. 

 The sequence in 1c converges to 1. 
 The sequence in 1e converges to 0. 

 The sequence in 2b converges to 0. 

4. If 1x ≥ , x
n
 will blow up as n gets large. However, if 1x < , the terms diminish with increasing n. 

Therefore the sequence converges to 0 if -1 < x < 1. 
5. This sequence converges to 0 for all x. In the long run, the factorial denominator will outstrip the 

exponential growth of the numerator, regardless of the base of the exponential. 

6. a. 5 2.7166s = , 10 2.71828s ≈ ; the series appears to converge to e. 

 b. 182
5 81

s = , 10 2.25001s ≈ ; the series appears to converge to 2.25. 

 c. 5 0.366s = , 10 0.367879s ≈ ; this series appears to converge to 1/e. 

7. This is the harmonic series. It diverges. 
8. The terms of this series grow in magnitude without bound. Therefore the series fails the n

th
 term test. 

It diverges. Alternately, this series is geometric with r = -2. |r| = 2 > 1, so the series diverges by the 

geometric series test. 

9. 
1

lim lim 1 0n
n n

n n
a

+
→∞ →∞

= = ≠ . This series also fails the n
th
 term test. It diverges. 

10. ( )1lim limcos cos0 1 0
n n

n n
a

→∞ →∞
= = = ≠ . This series diverges by the n

th
 term test. 

11. ( )1lim limsin sin 0 0
n n

n n
a

→∞ →∞
= = = . This series passes the n

th
 term test, but that result is inconclusive. We 

cannot yet say whether this series converges. (Curious? It diverges.) 

12. This series is geometric with er π= . Since e < π, |r| < 1. This series converges by the geometric series 

test. 
13. This time r > 1. The series diverges by the geometric series test. 

14. lim limsinn
n n

a n
→∞ →∞

=  which does not exist. The series diverges by the n
th
 term test. 

15. 
3

lim lim 1 0
3

n

n nn n
a

n→∞ →∞
= = ≠

+
. The series diverges by the n

th
 term test. 

16. lnlim lim 0n
n n

n n
a

→∞ →∞
= = . The n

th
 term test is inconclusive. We cannot determine whether this series 

converges. (It diverges.) 



17. 
2
5

1 5

1 3
=

−
 

18. 
1
8

2 16

1 7
=

−
 

19. 
1

64

2 2 3
0 0 0 8

3 3 1 3 1

8 8 8 64 8 1 40

nn n

n n
n n n

∞ ∞ ∞

+
= = =

 
= = ⋅ = = 

⋅ − 
∑ ∑ ∑  

20. ( )
1

4
5 4

0 0 0 5

4 4 4 4
4 20

5 5 1

n n
n

n n
n n n

+∞ ∞ ∞

= = =

⋅
= = ⋅ = =

−
∑ ∑ ∑  

21. ( )
1 1 1

21 2
2 3 2

0 0 0 3

2 2 2 3

3 3 1 2

n n
n

n n
n n n

− −∞ ∞ ∞

= = =

⋅
= = ⋅ = =

−
∑ ∑ ∑  

22. Since n begins at 10, our initial term is a = (3/4)
10

. The sum of the series is 
( )

10
3
4

3
4

0.22525
1

≈
−

. 

23. The initial term of this series is 5/3, and r = 1/3. The sum of the series is 
5
3

1
3

5

1 2
=

−
. 

24. ( ) ( )31
4 4 31

0 0 0 0 4 4

5 3 5 3 5 1 32
5

4 4 4 1 1 3

n n
n n

n n n
n n n n

∞ ∞ ∞ ∞

= = = =

 +
= + = ⋅ + = + = 

− − 
∑ ∑ ∑ ∑  

25. a. ( )1
10 1

0 10

0.7 0.7 7
0.777 0.7 0.07 0.007 0.7

1 0.9 9

n

n

∞

=

= + + + = ⋅ = = =
−

∑⋯  

 b. ( )1
10 1

0 10

0.02 4 1 37
0.82 0.8 0.02 0.002 0.0002 0.8 0.02 0.8

1 5 45 45

n

n

∞

=

= + + + + = + ⋅ = + = + =
−

∑⋯  

 c. ( )1
1000 1

0 1000

0.317 317
0.317317 0.317 0.000317 0.000000317 0.317

1 999

n

n

∞

=

= + + + = = =
−

∑⋯  

 d. 2.43838 2.4 0.038 0.00038 0.0000038= + + + +⋯  

  ( )1
100 1

0 100

0.038 0.038 12 19 1207
2.4 0.038 2.4 2.4

1 0.99 5 495 495

n

n

∞

=

= + = + = + = + =
−

∑  

26. ( )1
10 1

1 10

0.9 0.9
0.9 0.9 0.09 0.009 0.9 1

1 0.9

n

n

∞

=

= + + + = = = =
−

∑⋯ . The use of Theorem 1.3 is justified here 

since the common ratio, 1/10, is less than 1 in absolute value. 

27. There are many ways to keep track of the ups and downs of the ball. The one that my students have 

always preferred is to take the total amount of distance travelled downward, double it (to account for 
the bounces back up), and then subtract off the initial height of the ball once, since the ball travels 

down this initial distance but not back up. 

 ( )4
5 4

0 5

12
2 6 60

1

n

n

∞

=

⋅ ⋅ = =
−

∑ ; 60 – 6 = 54 feet 

28. ( )1
3 1

0 3

2
2 1 3

1

n

n

∞

=

⋅ ⋅ = =
−

∑ ; 3 – 1 = 2 meters 

29. ( )1
100 1

0 100

4 400
2 2 4.040404

1 99

n

n

∞

=

⋅ ⋅ = = ≈
−

∑ ; 4.040404 – 2 = 2.040404 feet 

30. 
4

0

1 7 2801
n

n=

⋅ =∑ . To see why the upper limit should be 4, index the group as follows. 

 n = 0: man; n = 1: wives; n = 2: sacks; n = 3: cats: n = 4: kits  



31.  With the exception of the fractions whose denominators are powers of 3, every term in this series has 

a denominator that is divisible by 2. That suggests that each term can be obtained by multiplying 
some other term by 1/2. In other words, there might be some structure involving geometric series with 

r = 1/2. The terms whose denominators are not divisible by 3 at all are the most obvious; they are 1/2, 

1/4, 1/8, and so forth—clearly a geometric series. If we start with the 1/3 and multiply successively 

by 1/2, we will generate the series 1/3 + 1/6 + 1/12, etc. This will account for every term whose 
denominator is divisible by 3 only once. If we want terms whose denominators have a double-factor 

of 3, we start with 1/9 and proceed to add on 1/18, 136, etc. In this way we can subdivide the series 

based on the number of times 3 divides the denominator of the term. This leads to the following 
rearrangement. 

 

 is divisible
by 2 or 3

1 1 1 1 1 1 1 1 1 1

2 3 4 6 8 9 12 16 18

1 1 1 1

2 4 8 16

1 1 1 1

3 6 12 24

1 1 1 1

9 18 36 72

k k

∞

= + + + + + + + + +

= + + + +

+ + + + +

+ + + + +

+

=

=

=

=

∑ ⋯

⋯

⋯

⋯

⋮

 

 As hoped for, each line in this tableau is a geometric series with ratio 1/2. Any term of the form 
1

2 3j k
 

(where j and k are non-negative integers) can be found in this table; it will be the j
th
 term in the k

th
 row. 

(k starts at 0. j starts at 0 as well, except in the first line in which it starts at 1.) 

 We can evaluate the sum of each line individually. 

 First line:  
1
2

1
2

1 1 1
1

2 4 8 1
+ + + = =

−
⋯  

 Second line: 
1
3

1
2

1 1 1 2

3 6 12 1 3
+ + + = =

−
⋯  

 Third line: 
1
9

1
2

1 1 1 2

9 18 36 1 9
+ + + = =

−
⋯  

 Had we written out the fourth line above, it would be… 

 Fourth line: 
1
27

1
2

1 1 1 2

27 54 108 1 27
+ + + = =

−
⋯  

 We now see that the given series is equivalent to ( )
2
32 2 2 2 1

3 9 27 3 3 1
0 3

1 1 1 1 1
1

n

n

∞

=

+ + + + = + = + = +
−

∑⋯ . 

Therefore the value of the series is 2. 

32. We begin by writing out the terms and breaking them into unit fractions as suggested by the hint. 

 1

1 2 3 4

2 2 4 8 16

1 1 1 1 1 1 1 1 1 1

2 4 4 8 8 8 16 16 16 16

n
n

n
S

∞

=

= = + + + +

= + + + + + + + + + +

∑ ⋯

⋯

 

 We now regroup, taking one term with each denominator for each grouping. 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1
2 4 8 16 4 8 16 8 16 16

S = + + + + + + + + + + + + +⋯ ⋯ ⋯ ⋯ ⋯  



 Each of these groupings is a convergent geometric series; r = 1/2 for all of them, and a is some power 

of 1/2. 

 

1 11 1
8 162 4

1 1 1 1
2 2 2 2

1 1 1
2 4 8

1
2

1 1 1 1

1

1
2

1

S
       

= + + + +       
− − − −       

= + + + +

= =
−

⋯

⋯  

 The value of the series is 2. 
33. We proceed essentially like in Problem 32. 

 

( ) ( ) ( ) ( )2 3 4 2 3 4 3 4 4

2 3 4

2 3 4
1

2 2 3 3 3 4 4 4 4

1 1 1 1 1 1 1 1 1 1

1 1 11

1 1 1 1

1 2 3 4

1 1 1 1 1 1 1 1 1 1

1 1 1 1

n
n

r r r r r r r r r r

r r r r

r r r r

n
S

r r r r r

r r r r r r r r r r

∞

=

= = + + + +

= + + + + + + + + + +

= + + + + + + + + + + + + +

      
= + + + +      

− − − −       

∑ ⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

 

 This last step is justified because each series has ratio 1/r, and we are given that |r| > 1. Therefore |1/r| 

must be less than 1, indicating that each of the geometric series converges. Now note that 1 11 r
r r

−− = . 

Dividing by this quantity in each term is equivalent to multiplying by 
1

r
r−

, and we can factor this out 

of the summation. Continuing… 

 

( )

( )

2 3 4

1 1 1 1
1

1
1

1 1 11

2

1

1

r

r r r r r

rr r r
r r r r

r

S

r

r

−

− − −

= + + + +

= ⋅ = ⋅ ⋅
−

=
−

⋯

 

 Note that if r = 2, we obtain 2/1
2
 = 2, consistent with Problem 32. 

34. a. ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1
1 2 2 3 3 4 1n n n

s
+

= − + − + − + + −⋯  

  

1 1
1 2ns = −( ) 1

2
+ 1

3
−( ) 1

3
+ 1

4
−( ) 1

n
+ +⋯ ( )1

1

1
1

1

n

n n
s

+

+

−

= −
 

 b. Sum = ( )1
1

lim lim 1 1
n n

n n
s

+
→∞ →∞

= − =  

35. ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1
1 3 2 4 3 5 4 6 2n n n

s
+

= − + − + − + − + + −⋯  

 

1 1
1 3n

s = −( ) 1 1
2 4

+ −( ) 1
3

+ 1
5

−( ) 1
4

+ 1
6

−( ) 1
n

+ +⋯ ( )

( )

1
2

1 1
2 2

31 1
2 2 2

1

lim lim 1

n

n n

n n
n n

s

s

+

+

+
→∞ →∞

−

= + −

= + − =

 

36. By partial fraction decomposition, 2

4 2 2
1 11 n nn − +−

= − , so our series is ( )2 2
1 1

2

n n

n

∞

− +
=

−∑ . 



 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
1 3 2 4 3 5 4 6 1 1

2 2
1 3

n n n

n

s

s

− +
= − + − + − + − + + −

= −

⋯

( ) 2 2
2 4

+ −( ) 2
3

+ ( )2 2
5 4

− + 2
6

−( ) 2
1n−

+ +⋯ ( )

( )

2
1

2
1

2
1

2 1

lim lim 2 1 3

n

n n

n n
n n

s

s

+

+

+
→∞ →∞

−

= + −

= + − =

 

37. Again, we begin by finding an expression for sn. 

 

( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3 3 3 3

1 2 2 3 3 4 4 5 1

3 3

1 2

n n n

n

s

s

+
= − + − + − + − + + −

= −

⋯

( ) 3

2
+ 3

3
−( ) 3

3
+ 3

4
−( ) 3

4
+ 3

5
−( ) 3

n
+ +⋯ ( )

( )

3

1

3

1

3

1

3

lim lim 3 3

n

n n

n nn n

s

s

+

+

+→∞ →∞

−

= −

= − =

 

38. As in Problem 36, the trick is to use partial fractions decomposition. 

( )1 1
12

1 1 1

1 1
1

( 1)
n n

n n nn n n n

∞ ∞ ∞

+
= = =

= = − =
+ +

∑ ∑ ∑ , as we saw in Problem 34 

39. While this series is telescoping, it is not convergent. To see that it is telescoping, apply a property of 

logarithms: ( )1
ln ln ln( 1)n

n
n n

+
= − + . 

 ( ) ( ) ( ) ( ) ( )1
2 2

ln ln ln( 1) ln 2 ln 3 ln3 ln 4 ln 4 ln 5n

n

n n

n n
∞ ∞

+
= =

= − + = − + − + − +∑ ∑ ⋯  

 The general partial sum sn is given by ( )ln 2 ln 1
n

s n= − + , but the limit as n → ∞  of sn does not exist. 

Therefore the series diverges. 

40. ( ) ( ) ( ) ( )arctan1 arctan 0 arctan 2 arctan1 arctan3 arctan 2 arctan( 1) arctan
n

s n n= − + − + − + + + −⋯  

 ( )arctan 0 arctan 1
n

s n= − + +  

 ( )( ) 2
lim lim arctan 0 arctan 1 0

n
n n

s n π

→∞ →∞
= − + + = +  

 The series converges to π / 2. 

41. Answers will vary. One example, exploiting geometric series is 2n

n
a = , 3n

n
b = . Then 

1 1

2
n

n

n n

a
∞ ∞

= =

=∑ ∑  

which diverges. 
1 1

3
n

n

n n

b
∞ ∞

= =

=∑ ∑  also diverges. However, ( )2 2
33

1 1 1

n
n

n
n

na

b

n n n

∞ ∞ ∞

= = =

= =∑ ∑ ∑  is a convergent series. 

42. False. The harmonic series is the classic counterexample. 
43. True. This is the contrapositive of the n

th
 term test. 

44. False. This statement says that all series converge to zero. The terms of a convergent series must 

converge to 0, but the sum typically does not. 

45. False. Let ( )1
2

n

na = . Then ( )1
2

1

n

n

∞

=

∑  is a convergent geometric series. However, 1

1 1

2n

n

a
n n

∞ ∞

= =

=∑ ∑  which 

fails the n
th
 term test. 

46. False. The harmonic series is a good counterexample. If 
n

a n= , then both 
1 1

1 1

n nna n

∞ ∞

= =

=∑ ∑  and 

1 1

n

n n

a n
∞ ∞

= =

=∑ ∑  diverge. 



47. True. For the series ( )1

1

n n

n

a a
∞

+

=

−∑ , the N
 th

 partial sum is given by ( )1

1

N

N n n

n

s a a +

=

= −∑ . We see that 

( ) ( )1 2 2 3 1 1 1( )
N N N N

s a a a a a a a a+ += − + − + + − = −⋯ . For the series to converge, we need 

lim
N

N
s

→∞
 to be finite. ( )1 1 1 1lim lim lim

N N N
N N N

s a a a a+ +
→∞ →∞ →∞

= − = − . lim
N

N
s

→∞
 exists iff 1lim

N
N

a +
→∞

 is finite. 

Of course, this is precisely the same as the requirement that lim
n

n
a

→∞
 is a finite constant as desired. 

 This is not the most general statement we can make about the convergence of telescoping series. For 

example, the same conclusion follows for any series that can be written in the form ( )n n k
a a +−∑ , 

where k is fixed. We can also reorder the subtraction, which is useful in some cases. 
48. a. In each stage, every segment has 1/3 of its length "erased," but then 2 new segments are drawn, 

each with 1/3 the length of the segment. In other words, if l is the length of a segment in stage n, 

then in stage n + 1 that segment will be replaced with segments whose length total 

( )1 1 4
3 3 3

2l l l l− + ⋅ = . In general, then, the perimeter of the snowflake grows geometrically with a 

common ratio of 4/3. The initial perimeter is 3. Therefore, using p for perimeter, we have 

( )4
3

3
n

np = ⋅ . 

 Since r > 1, this sequence diverges. This tells us that the Koch snowflake has infinite perimeter. 

 b. The area of an equilateral triangle with side length l is given by 23

4
l , so the initial triangle has 

area 3

4
. In stage 1, we add three triangles. Each one has 1/3 the side length of the original 

triangle, so they have 1/9 the area of the original triangle. (Remember that area goes like the 

square of the side length!) So the area of the stage 1 snowflake is 3 31
4 9 4

3+ ⋅ ⋅ . 

  In stage 2, we add 3·4 = 12 new triangles. You can count this if you like (just count the triangles 
at one of the 6 points of the snowflake and multiply by 6). However, it should make some sense 

that at every stage we're adding four times as many new triangles as in the previous stage; each 

segment is replaced by 4 segments, and we ultimately add a triangle to each of these segments. 

  Area = ( ) ( ) 1

2 33 3 3 3 3 3 31 1 1 4
4 9 4 9 4 9 4 4 4 9

0

3 3 4 3 16
n

n

n

+

∞

=

+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + = + ⋅∑⋯  

   ( )
3

3 3 3 3 3 3 3 9 3 2 3124 4
4 36 4 12 9 4 4 60 59 4

0 0 91

n

n

n

n n

∞ ∞

= =

= + ⋅ = + ⋅ = + = + =
−

∑ ∑  

  The area of the Koch snowflake is 2 3

5
, which is finite, even though its perimeter is infinite. 

49. a. Let's call Figure 1.3 "stage 0." The triangle in stage 0 has area T. 

 The new triangles in stage 1 (Figure 1.4) each have area T/8, and there are two of them. Therefore 

the additional area in stage 1 is 
8 4

2 T T⋅ = . 

 In stage 2 (Figure 1.5), each new triangle is 1/8 the area of the triangles from stage 1, namely 

( )1
8 8

T . There are four of them: 2 from each of the triangles that were new in stage 1. Therefore the 

new area added in stage 2 is 2 168
4 T T⋅ = . 

 As we can see, the number of new triangles doubles with every stage, so that in stage n we will 
add 2

n
 triangles. Their areas are dwindling, though, decaying exponentially by a factor of 1/8 

since the new triangles always have 1/8 the area of the triangles from the previous stage. So each 

new triangle in stage n has area 1

8n T . Therefore stage n adds a total of ( )1 1
48

2 n

nn
T T⋅ =  units of 

area. 

 The total amount of area in the parabola, then, is ( )2

1 1 1
4 44

0

n

n

T T T T
∞

=

+ + + = ⋅∑⋯ . 



 b. Since the common ratio (1/4) is less than 1 in absolute value, we can easily sum the series. 

  Area = ( )1
4 1

0 4

4

1 3

n

n

T T
T

∞

=

= =
−

∑ . 

 

 

Section 2 

 

1. Answers may vary. The "right" answer is 
2 3 4 51 1 1 1

5 2 6 24 120
( ) 1P x x x x x x= + + + + + . 

2. For definiteness, we will start with the 5
th
 degree Maclaurin polynomial of the sine function. 

 ( )

3 51 1
6 120

3 5 2 4 61 1 1 1 1
6 120 2 24 720

2 4 61 1 1
2 24 720

sin

cos

cos

x x x x

x x x x dx x x x C

x x x x C

≈ − +

− ≈ − + = − + +

≈ − + − +

∫  

 This agrees with Equation (2.2), up to the constant of integration. To fix the value of the constant, we 
can plug in 0 for x and require equality. This gives cos(0) = 0 + C, or C = 1. The constant of 

integration works out to be the constant term. 

3. 2 3 4 51 1
1

1 1 ( )
x x x x x

x x
= = − + − + − +

+ − −
⋯  

 Therefore 2 3 4 5

5 ( ) 1P x x x x x x= − + − + − . 

4. a. 2 3 41
1

1
t t t t

t
≈ − + − +

+
. Integrating both sides gives… 

 

( )

( )

1

2 3 4

0 0

2 3 4 51 1 1 1
2 3 4 50 0

2 3 4 51 1 1 1
2 3 4 5

1
1

1

ln 1

ln 1

x

xx

dt t t t t dt
t

t t t t t t

x x x x x x

≈ − + − +
+

+ ≈ − + − +

+ ≈ − + − +

∫ ∫

 

 If we assume that x is at least -1 (an assumption that will prove reasonable far down the road), 

then we can dispense with the absolute value bars to obtain 
2 3 4 51 1 1 1

2 3 4 5
ln(1 )x x x x x x+ ≈ − + − + . 

 b. From Equation (2.4), 
2 3 4 51 1 1 1

2 3 4 5
ln(1 )x x x x x x− ≈ − − − − − . Subbing in (-x) for x… 

  
( ) 2 3 4 51 1 1 1

2 3 4 5

2 3 4 51 1 1 1
2 3 4 5

ln 1 ( ) ( ) ( ) ( ) ( ) ( )

ln(1 )

x x x x x x

x x x x x x

− − ≈ − − − − − − − − − −

+ ≈ − + − +
 

 c. Yes! They are the same! 

 d. The graphs are shown below, with the Maclaurin polynomial in green. The fit appears to be good 

for approximately -0.7 < x < 0.7, though individual responses to this question may vary. Under no 
circumstances should students claim that the fit is good for x-values greater than 1 in magnitude. 



   
 e. ln(0.8) = ln(1 + -0.2) ≈ -0.223143 

  ( ) ( ) ( ) ( ) ( )
2 3 4 51 1 1 1

5 2 3 4 5
( 0.2) 0.2 0.2 0.2 0.2 0.2 0.223131P − = − − − + − − − + − ≈ − . Pretty close! 

  ln(1.8) = ln(1 + 0.8) ≈ 0.5878 

  ( ) ( ) ( ) ( ) ( )
2 3 4 51 1 1 1

5 2 3 4 5
(0.8) 0.8 0.8 0.8 0.8 0.8 0.6138P = − + − + ≈ . Close-ish, but not that great. 

  ln(5) = ln(1 + 4) ≈ 1.609 

  ( ) ( ) ( ) ( ) ( )
2 3 4 51 1 1 1

5 2 3 4 5
(4) 4 4 4 4 4 158.133P = − + − + ≈ . Not even remotely close. 

5. a. 
( )

( ) ( ) ( )
2 3

2 2 2 2 4 6

2 2

1 1
1 1

1 1
x x x x x x

x x
= ≈ + − + − + − = − + −

+ − −
 

 b. ( )2 4 6

2

0 0

1
arctan 1

1

x x

x dt t t t dt
t

= ≈ − + −
+∫ ∫  

  ( )3 5 7 3 5 71 1 1 1 1 1
3 5 7 3 5 7

0
arctan

x

x t t t t x x x x≈ − + − = − + −  

  We are asked only for the fifth-degree Macluarin polynomial. 
3 51 1

5 3 5
( )P x x x x= − + . 

 c. The graphs are shown below, with the Maclaurin polynomial in green. The fit appears to be good 
for approximately -0.75 < x < 0.75, though individual responses to this question may vary. Under 

no circumstances should students claim that the fit is good for x-values greater than 1 in 

magnitude. 

   
 d. arctan(0.2) ≈ 0.1973956 

  
3 51 1

5 3 5
(0.2) (0.2) (0.2) (0.2) 0.1973973P = − + ≈ . That's a pretty good match! 

  arctan(-0.6) ≈ -0.5404 

  
3 51 1

5 3 5
( .6) ( .6) ( .6) ( .6) 0.5436P − = − − − + − ≈ − . Still pretty close. 

  arctan(3) ≈ 1.249 

  
3 51 1

5 3 5
(3) (3) (3) (3) 42.6P = − + ≈ . That's a pretty terrible estimate. 



6. a. 
3 51 1

6 120
sin( )x x x x≈ − +  

 
3 5 3 51 1 4 4

6 120 3 15
sin(2 ) (2 ) (2 ) (2 ) 2x x x x x x x≈ − + = − +  

 b. ( )( )3 5 21 1 1
6 120 2

2sin cos 2 1x x x x x x≈ − + −  

Carrying out the multiplication on a CAS and neglecting the 7
th
-order term, we get 

3 54 11
3 60

2sin cos 2x x x x x≈ − + .
 

 c. The approximations for sin(2x) and 2sin(x)cos(x) agree up to the third-order term. (Really up until 

the fourth-order term since it has a coefficient of zero in both polynomials.) This suggests that the 

two trigonometric expressions might be equal, which they actually are. 

 d. ( )
2

2 3 2 4 61 1 1
6 3 36

sin 1x x x x x≈ − = − +  

 e. ( )
2

2 2 4 2 4 6 81 1 1 1 1
2 24 3 24 576

cos 1 1x x x x x x x≈ − + = − + − +  

 f. 
2 2 2 4 6 2 4 6 8 6 81 1 1 1 1 1 1

3 36 3 24 576 72 576
sin cos 1 1x x x x x x x x x x x+ ≈ − + + − + − + = − +  

  The eighth-degree Maclaurin polynomial for 2 2sin cosx x+  is essentially 1, though it includes 

some small non-zero contributions in the 6
th
 and 8

th
 degree terms. If |x| is large enough, then these 

higher-order terms will certainly play a significant role. However, for |x| sufficiently close to 0, 

we find that our approximation for 2 2sin cosx x+  is extremely close to 1, as it should be. 

7. a. As a geometric series: 

2 35
2

2

5 5 5 5 5

2 1 2 2 2 2 2 2 2x

x x x

x

   
= = + ⋅ + + +   

− −    
⋯  

 2 35 5 5 5 5

2 2 4 8 16
x x x

x
≈ + + +

−
 

 By long division: 

 

2 35 5 5 5
2 4 8 16

2 3

5
2

25
2

25 5
2 4

2 35
4

2 35 5
4 8

35
8

2 5 0 0 0

5

0

0

x x x

x x x x

x

x x

x x

x x

x x

x

+ + +

− + + +

−

+

−

+

−

⋯

 

 Note that the quotient is the same as what we obtained from the geometric expansion. 

 b. 
( )

2 4

2 2

3 3
3 3 3

1 1
x x

x x
= = − + −

+ − −
⋯  

  2 4

2

3
3 3 3

1
x x

x
≈ − +

+
 



  

2 4

2 2 4

2

2 4

2 4

4

3 3 3

1 3 0 0

3 3

3 0

3 3

3

x x

x x x

x

x x

x x

x

− +

+ + + +

+

− +

− −

⋯

 

 c. 
( )

( )2

2 2

2 2
2 2

1 1

x x
x x x

x x
= = + − +

+ − −
⋯  

  3

2

2
2 2

1

x
x x

x
≈ −

+
 

  

3

2 3

3

3

2 2

1 2 0

2 2

2

x x

x x x

x x

x

−

+ + +

+

−

⋯  

 d. 
2 3

2

22 1 2 4 8

x

x

x x x x

x
= = + + +

− −
⋯  

  
2 3

2 2 4 8

x x x x

x
≈ + +

−
 

  

2 31 1 1
2 4 8

2 3

21
2

2 31
2

2 31 1
2 4

31
4

2 0 0

0

x x x

x x x x

x x

x x

x x

x

+ +

− + + +

−

+

−

⋯

 

8. We begin with the fourth-degree polynomial for 1
1

( )
x

f x
−

=  since we will lose one from the degree 

due to differentiation. 

 ( )

2 3 4

2 3 4

2 3

2

1
1

1

1
1

1

1
1 2 3 4

(1 )

x x x x
x

d d
x x x x

dx x dx

x x x
x

≈ + + + +
−

 
≈ + + + + 

− 

≈ + + +
−

 

9. a. Based on Problem 4, 
2 31 1

2 3
ln(1 )x x x x+ ≈ − + . 

 ( ) ( ) ( )
2 3

2 2 2 21 1
2 3

ln 1 x x x x+ ≈ − + . Since we want only a second-degree polynomial, we keep only 

the first term. ( )2 2
ln 1 x x+ ≈  

 b. 
31

6
sin x x x≈ −  



  ( ) ( )
3

3 3 31
6

sin x x x≈ − . Since we want only a third-degree polynomial, we keep only the first term. 

( )3 3
sin x x≈ . 

10. The highest-degree polynomial should provide the best fit to the graph. Therefore the sixth-degree 

polynomial is B, the fourth-degree polynomial is A, and the second-degree polynomial is C. 

11. The higher-degree polynomial should provide the best fit to the graph. Therefore A is the seventh-
degree polynomial, and B is the third-degree. 

 

 

Section 3 
 

1. a. 
2 31 1 1

3 2 8 16
( ) 1 ( 1) ( 1) ( 1)P x x x x= + − − − + −  

 
1/21 1 1

2 2 2

3/21 1 1
4 4 8

5/23 3 3 1
8 8 8 6 16

( ) (1) 1 1

( ) (1)

( ) (1)

( ) (1)

f x x f

f x x f

f x x f

f x x f

−

−− − −

−

⋅

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = → =

 

 b. 
2 3 41 1 1

4 2 6 24
( ) ( ) ( ) ( ) ( )

e e e e e
P x e e x e e x e e x e e x e= + − + − + − + −  

  1
2

1
6

(4) (4) 1
24

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

x e e

x e e

x e e

x e e

x e e

f x e f e e e

f x e f e e e

f x e f e e e

f x e f e e e

f x e f e e e

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

= → = →

 

 c. 
21

2 2
( ) 1P x x= −  

  

( )

2

2

3/2
2

( ) 1 (0) 1 1

( ) (0) 0 0
1

1 1
( ) (0) 1

21

f x x f

x
f x f

x

f x f
x

= − → = →

−
′ ′= → = →

−

− −
′′ ′′= → = − →

−

 

 d. 2 3

3 ( ) 8 2 3P x x x x= − + +  Hm… that looks a lot like f(x). 

  

3 2

2

( ) 3 2 8 (0) 8 8

( ) 3 6 2 (0) 2 2

( ) 6 6 (0) 6 3

( ) 6 (0) 6 1

f x x x x f

f x x x f

f x x f

f x f

= + − + → = →

′ ′= + − → = − → −

′′ ′′= + → = →

′′′ ′′′= → = →

 

2. a. 
2 3 41 1 1

4 2 3 4
( ) ( 1) ( 1) ( 1) ( 1)P x x x x x= − − − + − − −  

 2

3

4

1

1 1
2

2 1
3

(4) (4)6 1
4

( ) ln( ) (1) 0 0

( ) (1) 1 1

( ) (1) 1

( ) (1) 2

( ) (1) 6

x

x

x

x

f x x f

f x f

f x f

f x f

f x f

− −

− −

= → = →

′ ′= → = →

′′ ′′= → = − →

′′′ ′′′= → = →

= → = − →

 



 b. Rather than taking derivatives (which will get messy due to lots of product rule), it makes more 

sense to start with the Maclaurin polynomial for e
x
 and substitute in x

2
 for x. 

  
2

2 3 4 51 1 1 1
2 6 24 120

2 4 6 8 101 1 1 1
2 6 24 120

1

1

x

x

e x x x x x

e x x x x x

≈ + + + + +

≈ + + + + +
 

  But we're only asked for the fifth-order polynomial, so we ignore the last three terms. 

  
2 41

5 2
( ) 1P x x x= + +  

 c. 
21 1

2 3 9
( ) 1 ( 1) ( 1)P x x x= − + + + +  

  

1/3

2/31 1 1
3 3 3

5/32 2 1
9 9 9

( ) ( 1) 1 1

( ) ( 1)

( ) ( 1)

f x x f

f x x f

f x x f

−

−−

= → − = − → −

′ ′= → − = →

′′ ′′= → − = →

 

 d. 2 2

2 ( ) 4 9( 1) ( 1) 7 4P x x x x x= + − + − = + − , if you expand it. The 2
nd

 expression looks familiar. 

  

2( ) 7 4 (1) 4 4

( ) 2 7 (1) 9 9

( ) 2 (1) 2 1

f x x x f

f x x f

f x f

= + − → = →

′ ′= + → = →

′′ ′′= → = →

 

3. a. 
231 1

2 2 16 256
( ) ( 4) ( 4)P x x x= − − + −  

 

1/2 1 1
2 2

3/21 1 1
2 16 16

5/ 23 3 3
4 128 256

( ) (4)

( ) (4)

( ) (4)

f x x f

f x x f

f x x f

−

−− − −

−

= → = →

′ ′= → = →

′′ ′′= → = →

 

 b. Just plug 2x in for x in the Maclaurin polynomial for cos(x). 

  

2 41 1
2 24

2 41 1
2 24

cos( ) 1

cos(2 ) 1 (2 ) (2 )

x x x

x x x

≈ − +

≈ − +
 

  We want the third-order polynomial, so we neglect the terms of higher degree than 2. 

  2

3 ( ) 1 2P x x= −  

 c. This time, since the center has been moved, our best bet is to start from scratch. 

  ( ) ( ) ( )
2 32 31

3 2 3 3 3 3
( ) 3P x x x xπ π π−= + + + + − +  

  

( )

( )
( )

( )

1 1
3 2 2

3

3

2 3

3 3

( ) cos(2 )

( ) 2sin(2 ) 3 3

( ) 4cos(2 ) 2 1

( ) 8sin(2 ) 4 3

f x x f

f x x f

f x x f

f x x f

π

π

π

π

− − −

−

−

−−

= → = →

′ ′= − → = →

′′ ′′= − → = →

′′′ ′′′= → = − →

 

 d. 
2 31 1 1 1

3 5 25 125 625
( ) ( 5) ( 5) ( 5)P x x x x= − − + − − −  

  
2

3

4

1 1 1
5 5

1 1 1
25 25

2 2 1
125 125

6 6 1
625 625

( ) (5)

( ) (5)

( ) (5)

( ) (5)

x

x

x

x

f x f

f x f

f x f

f x f

− − −

− − −

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

 

4. An n
th
-degree polynomial is its own n

th
-degree Taylor polynomial. 

5. The Taylor polynomial for ln(x) is just the Maclaurin polynomial for ln(1 + x) shifted by one unit. 

6. a. From Problem 1c, 
2 21

2
1 1x x− ≈ − . Therefore ( )2 2 31 1

2 2
1 1x x x x x x− ≈ − = − . 

31
3 2
( )P x x x= − . 

 b. As we know, 
21

2
1

x
e x x≈ + + . Therefore ( )2 2 31 1

2 2
1

x
xe x x x x x x≈ + + = + + . 

2 31
3 2
( )P x x x x= + + . 



 c. 2 3

3 ( ) 1 ( 2) ( 2) ( 2)P x x x x= − + − − − + −  

  
2

3

4

1
1

1

(1 )

2

(1 )

6

(1 )

( ) (2) 1 1

( ) (2) 1 1

( ) (2) 2 1

( ) (2) 6 1

x

x

x

x

f x f

f x f

f x f

f x f

−

−

−

−

= → = − → −

′ ′= → = →

′′ ′′= → = − → −

′′′ ′′′= → = →

 

 d. We could start from scratch, on this one, but instead we will cheat. 

( )ln(4 ) ln(1 3 ) ln 1 ( 3)x x x− = + − = − − . This suggests that we can just plug in (x – 3) for x in the 

polynomial for ln(1 – x). This is indeed the case, and the center of the polynomial will shift 

automatically for us! 

  
2 31 1

3 2 3
( ) ( 3) ( 3) ( 3)P x x x x= − − − − − −  

7. a. 
31

6
sin( )x x x≈ −  

 ( )3 3 3 4 61 1
6 6

sin( )x x x x x x x≈ − = −  

 There are no terms of 3
rd
 degree or lower. So 3 ( ) 0P x = . This may seem odd, but zero is in fact a 

good approximation for values of 3 sin( )x x  for x-values near x = 0. 

 b. 2 4

2

1
1

1
x x

x
≈ − +

+
 

  ( )2 4 3 5

2
1

1

x
x x x x x x

x
≈ − + = − +

+
 

  3

3 ( )P x x x= −  

 c. 
2 33 72 2

3 5 25 125 625
( ) ( 2) ( 2) ( 2)P x x x x−= − + − + + +  

  
( )

( )

( )

2

2

2
2

3

3
2

4 2

4
2

2 2
5 51

1 3 3
25 25

1

2 6 4 2
125 125

1

6 36 6 742
625 625

1

( ) ( 2)

( ) ( 2)

( ) ( 2)

( ) ( 2)

x

x

x

x

x x

x

x x

x

f x f

f x f

f x f

f x f

− −

+

− − −

+

− − −

+

− + −

+

= → − = →

′ ′= → − = →

′′ ′′= → − = →

′′′ ′′′= → − = →

 

 d. 
31

6

21
2

sin
tan

cos 1

x xx
x

x x

−
= ≈

−
 

  

31
3

2 31 1
2 6

31
2

31
3

1

x x

x x x

x x

x

+

− −

−

 

  
31

3 3
( )P x x x= +  

8. a. Let ( )f x x= . 

 b. Let the center be a = 9 since that's a value near x = 10 at which f is easy to evaluate. 

 c. 
2 31 1 1

3 6 216 3888
( ) 3 ( 9) ( 9) ( 9)P x x x x= + − − − + −  



  
1/21 1 1

2 6 6

3/21 1 1
4 108 216

5/ 23 1 1
8 648 3888

( ) (9) 3 3

( ) (9)

( ) (9)

( ) (9)

f x x f

f x x f

f x x f

f x x f

−

−− − −

−

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

 

 d. 1 1 1
3 6 216 3888

10 (10) 3 3.16229P≈ = + − + =  

9. a. Let 3( )f x x= . 

 b. Let a = 8. This is still reasonably close to 10, and it is a number at which f and its derivatives will 

be easy to evaluate. 

 c. 
2 351 1

3 12 288 20736
( ) 2 ( 8) ( 8) ( 8)P x x x x= + − − − + −  

  

3

2/31 1 1
3 12 12

5/32 1 1
9 144 288

8/310 5 5
27 3456 20736

( ) (8) 2 2

( ) (8)

( ) (8)

( ) (8)

f x x f

f x x f

f x x f

f x x f

−

−− − −

−

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

 

 d. 2 33 51 1
3 12 288 20736

10 (10) 2 2 2 2 2.1547P≈ = + ⋅ − ⋅ + ⋅ =  

10. 25
2 22
( ) 3 8 ; (0.3) 0.825P x x x P= − + =  

 
2 35 1

3 32 3
( ) 3 8 ; (0.3) 0.834P x x x x P= − + + =  

 3 (0.3)P  will probably give the better approximation of (0.3)f  since it is a higher-degree polynomial. 

11. 21
2 22
( ) 2 0( 4) ( 4) ; ( 4.2) 2.02P x x x P= + + + + − =  

 
2 31

3 32
( ) 2 ( 4) ( 4) ; ( 4.2) 2.012P x x x P= + + + + − =  

 3 ( 4.2)P −  will likely give the better approximation of ( 4.2)f −  since it is a higher-degree polynomial. 

12. 2 33 91
3 4 2 32
( ) 1 ( 2) ( 2) ( 2)P x x x x= + − + − + −  

 

0

2

1

2

2

2

3

2

3

(0 1)

3 3 3
4 4(1 1)

3 1
2(2 1)

3 27 9
16 32(3 1)

(2) 1 1

(2)

(2) 1

(2)

f

f

f

f

+

+

+

+

= = →

′ = = →

′′ = = →

′′′ = = →

 

13. 25
2 4
( ) 6 2P x x x= − +  

 
2

2

1 1 1
1

2 5 52 1
2 2 4

(0) 6 6

(0) ( 1) 2 2

(0) ( 1)

f

f

f

+

+

= →

′ = − ⋅ = − → −

′′ = − ⋅ = →

 

14. Since we only know the value of f at x = 3, we must use x = 3 as our center. This limits us to using 

only information about x = 3. We only have (3)f ′ , and no higher derivatives. We can only write a 

first-order Taylor polynomial. 

15. a. Since the Taylor polynomial agrees with the function at its center, ( 1) ( 1) 2f P− = − = . 

 b. 
( 1)

11!
1 ( 1) 1

f
c f

′ − ′= = − ⇒ − = −  

 c. We have no information about f at x = 0, so we cannot determine (0)f ′′ . 

 d. 
( 1)

33!
12 ( 1) 6 12 72

f
c f

′′′ − ′′′= = ⇒ − = ⋅ =  

16. a. (4) (4) 5f P= =  



 b. 
(4)

22!
0

f
c

′′
= =  because there is no quadratic term. Therefore (4) 0f ′′ = . 

 c. 
(4)

33!
1

f
c

′′′
= = . Therefore (4) 1 3! 6f ′′′ = ⋅ = . 

 d. We have no information about f at x = 0, so we cannot determine (0)f ′′ . 

17. Since f is infinitely differentiable and its graph has an inflection point at x = -3, we can infer that 

( 3) 0f ′′ − = . This gives the tableau below, from which we can say that 2 ( ) 8 ( 3)P x x= + + . 

 

( 3) 8 8

( 3) 1 1

( 3) 0 0

f

f

f

− = →

′ − = →

′′ − = →

 

18. Since g has a local minimum at x = 0, its first derivative must be zero there. (Remember that g is 
infinitely differentiable.) This implies that the coefficient of the first-order term in the Taylor 

polynomial must be zero; there will be no linear term in the Taylor polynomial. This eliminates (a) 

and (b). Since the critical point is a minimum, the second derivative of g must be positive at x = 0. 
This means the quadratic coefficient in the Taylor polynomial must be positive. The answer is (c). 

19. For x > 0, x x= . For x < 0, x x= − . f(x) is two polynomial functions spliced together. 

 Centered at 2 (which is greater than 0): 4 ( )P x x=  

 Centered at -3 (which is less than 0): 4 ( )P x x= −  

 No "work" is required to write down these Taylor polynomials. A polynomial function is its own 

Taylor polynomial. 

 f is not differentiable at x = 0, so it has no Taylor polynomial centered there. 

20. From the graph, f(2) = 0. Near x = 0, the graph of f is increasing and concave down. Therefore 

(2) 0f ′ >  and (2) 0f ′′ < . These pieces of information tell us that the Taylor polynomial will have no 

constant term, a positive linear coefficient, and a negative quadratic coefficient. The answer is (b). 

21. ( 1) 2

2 2
( ) 1

k k
P x kx x

−= + +  

 1 1

( 1)2 2

2

( ) (1 ) (0) 1 1 1

( ) (1 ) (0) 1

( ) ( 1)(1 ) (0) ( 1) 1 ( 1)

k k

k k

k kk k

f x x f

f x k x f k k k

f x k k x f k k k k

− −

−− −

= + → = = →

′ ′= + → = ⋅ = →

′′ ′′= − + → = − ⋅ = − →

 

22. a. 3

31

(1 )
( ) (1 )

x
f x x −

+
= = + ; k = -3. 

3( 4) 2 2

2 2
( ) 1 3 1 3 6P x x x x x

− −= − + = − + . 

 b. 
2 2/55( ) (1 ) (1 )f x x x= + = + ; k = 2/5. 

32
5 5 2 232 2

2 5 2 5 25
( ) 1 1P x x x x x

−⋅
= + + = + − . 

 c. ( )( )2

1/2
21

1
( ) 1

x
f x x

−

−
= = + − . This is more complicated because of the composition. Let us begin 

by finding a polynomial for 1/2( ) (1 )g x x −= + . Then we can just substitute in –x
2
. In g(x), k = -1/2. 

  g : 
31

2 2 2 231 1
2 2 2 2 8
( ) 1 1P x x x x x

−− ⋅
= − + = − +  

  f : ( ) ( )
2

2 231
2 2 8
( ) 1P x x x= − − + − 2 431

2 8
1 x x= + + . (The crossed-out terms are of too-high degree.) 

So 
21

2 2
( ) 1P x x= + . 

 d. The arcsine function is the antiderivative of the function from part (c). Therefore we can obtain 

its Maclaurin polynomial by integrating: 

  ( ) ( )2 3 31 1 1

2 6 62 0
0 0

1
arcsin 1

1

x x
x

x dt t dt t t x x
t

= ≈ + = + = +
−

∫ ∫  

  If you prefer a method without definite integrals and a dummy variable… 



  ( )2 31 1
2 6

2

1
1

1
dx x dx x x C

x
≈ + = + +

−
∫ ∫ . To determine the value of C, we require that this 

polynomial match the arcsine function at x = 0. 

  
31

6
arcsin(0) 0 (0) 0C C= + + ⇒ = . Either way, we obtain 

31
3 6
( )P x x x= +  

23. True. We can use the formula 
( ) ( )

!

kf a

kk
c= , where ck is the coefficient of the k

th
-degree term in the 

polynomial, to find the values of ( ) ( )kf a  from ck. 

24. False. The Taylor polynomial gives no information about what is happening in a function at x-values 

other than the center. 
25. False. We need to divide by k!. 

26. True. We are permitted to substitute (x – h) for x. This automatically moves the center of the 

polynomial to coincide with the graphical shift. 

27. a. sinh(0) = 0; cosh(0) = 1 

 b. sinh cosh
2 2

x x x xd d e e e e
x x

dx dx

− −− +
= = =  

  cosh sinh
2 2

x x x xd d e e e e
x x

dx dx

− −+ −
= = =  

 c. sinh(x): 
3 51 1

6 6 120
( )P x x x x= + +    cosh(x): 

2 4 61 1 1
6 2 24 720
( ) 1P x x x x= + + +  

  1
6

(4) (4)

(5) (5) 1
120

(6) (6)

( ) sinh (0) 0 0

( ) cosh (0) 1 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

= → = →

= → = →

= → = →

 

1
2

(4) (4) 1
24

(5) (5)

(6) (6) 1
720

( ) cosh (0) 1 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

( ) cosh (0) 1

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

= → = →

= → = →

= → = →

 

  The Macluarin polynomials for the hyperbolic functions are exactly like their corresponding 

trigonometric functions, except that these new polynomials do not alternate. 

28. 1tan x− : 
31

3 3
( )P x x x= −  (We've already seen this. Don't recreate the wheel.) 

 
31

6

21
2

sinh
tanh

cosh 1

x xx
x

x x

+
= ≈

+
: 

31
3 3
( )P x x x= −  

 

31
3

2 31 1
2 6

31
2

31
3

1

x x

x x x

x x

x

−

+ +

+

−

 

 Since the functions have the same third-order Maclaurin polynomials (in fact, they have he same 
fourth-order Maclaurin polynomials), their values will be close to one another for x-values near zero. 

29. a. Rather than solve the differential equation, let's just check that 1( )v t  satisfies the differential 

equation. ( )Left side =  = Right sided

dt
mv m gt m g′ = ⋅ = ⋅ . The solution checks. 

 b. It will be useful to know the derivative of the hyperbolic tangent before we begin. 

  
2 2

2

sinh cosh sinh
cosh cosh

tanhd d x x x
dx dx x x

x −= = . It is not hard to show from the definitions of the hyperbolic sine 

and cosine functions that 2 2cosh sinh 1x x− = . If we define the hyperbolic secant to be the 



reciprocal of the hyperbolic cosine, then we have 
2

tanh sechd

dx
x x= , which is analogous to the 

regular trigonometric function. 

  We can now move on to the differential equation. 
  Left side:     Right side: 

  

( )( )
( )

( )

2

2

tanh

sech

sech

mg gkd

dt k m

mg gk gk

k m m

gk

m

mv m t

m t

mg t

′ = ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅

  

( )( )
( )( )

( )
( )( )

( )

2
2

2

2

2

2

tanh

tanh

tanh

1 tanh

sech

mg gk

k m

mg gk

k m

gk

m

gk

m

gk

m

mg kv mg k t

mg k t

mg mg t

mg t

mg t

− = − ⋅

= − ⋅ ⋅

= − ⋅

= − ⋅

⋅ ⋅

 

  The last line on the right side is another hyperbolic identity, this one similar to the Pythagorean 

trig identity. 

  In any event, left and right sides match, so this function does satisfy the differential equation. 
(And if you thought this problem was ugly, you should see it in terms of exponentials without the 

use of hyperbolic functions.) 

 c. We already know (from Problem 28) that 
31

3
tanh x x x≈ − . We can substitute to find a Maclaurin 

polynomial for 2 ( )v t . 

  
( )

( )

3
1

3 3

3/2
31

3

( )
mg gk gk

k m m

mg gk

k m

P t t t

gt t

 
= ⋅ ⋅ − ⋅ 

 

= − ⋅ ⋅

   

  If t is small, then the third-order term will be negligible. In this case, we find that 

2 1( ) ( )v t gt v t≈ = . In other words, 1( )v t  is a good approximation for 2 ( )v t  for small t-values. This 

makes sense in context. When the object has just begun falling, it is not yet moving very quickly. 

Therefore there will not be much air resistance; the simpler model should give good predictions 

of the object's velocity. 

30. As we know, 
3 51 1

6 120
sinθ θ θ θ≈ − + . If θ is small, then the third- and higher-order terms will be 

negligible. We can safely omit them if θ is sufficiently small. For such θ, sinθ θ≈ . 

31. a. The key is to replace the 
2

1

1 γ−
 term with a polynomial. We already know from Problem 22 that 

2

21 1
21

1
γ

γ
−

≈ + . Therefore ( )2 2 2 21 1
2 2

1 1RK mc mcγ γ≈ + − = ⋅ . Recall, though, that v

c
γ = . This means 

we can simplify further. 

 ( )
2

2

22 2 21 1 1
2 2 2

v v
R Cc c

K mc mc mc K≈ ⋅ = ⋅ ⋅ = =  

 b. If v is much smaller than c, then v/c (otherwise known as γ) will be close to zero. In this situation, 

the Maclaurin polynomial from part (a) can be used as a good approximation for kinetic energy. 
But the polynomial from part (a) was just the classical formula for kinetic energy! Therefore, the 

classical model is a good approximation for the kinetic energy of an object if it is moving slowly 

relative to the speed of light. 
32. a. We apply the result from Problem 21, treating d/r as the variable and letting k = -2. 



 
( )

( ) ( )2

2 2
2 31
2

1
1 2 1 2 3

d
r

d d d d

r r r r

− ⋅−

+
≈ − ⋅ + ⋅ = − ⋅ + ⋅ . Now by substituting –d/r, we find that 

( )
( )2

2
1

1
1 2 3

d
r

d d

r r
−

≈ + ⋅ + . 

 ( )( ) ( )( )2 2 3

2 2 41 2 3 1 2 3 4k d d d d k d kd

r r r r rr r r
E  ≈ + ⋅ + − − ⋅ + = ⋅ =    

 

 b. The approximation in part (a) shows that the electrical field at a distance of r units along the axis 

of the dipole varies inversely with r
3. The proportionality constant is 4kd. 

33. a. ( ) 1
343

343
343

343 S

D

obs act act D v

s

v
f f f v

v
−

+
= ⋅ = ⋅ + ⋅

−
 

 Expanding 
1

343 Sv−
 as a geometric series, we obtain ( )343

343

1 1 1 1
1

343 343 3431

s

S

v

v

S
v

= ⋅ ≈ +
− −

. 

 b. ( ) ( )1
343 343

343 1 Sv

obs act Df f v≈ ⋅ + ⋅ +  

 c. The rest is just algebra, until the very end. 

  

( ) ( ) ( )( )

( )

( )

( )

1
343 343 343 343

343 343 343

343 343

343

343 1 1 1

1

1

1

S SD

S S DD

D S S D

D S

v vv

act D act

v v vv

act

v v v v

act

v v

act

f v f

f

f

f

+

+

⋅ + ⋅ + = ⋅ + +

= ⋅ + + +

= ⋅ + +

≈ ⋅ +

 

  We have omitted the last term in the parentheses because it contains the product 
S D

v v , which is a 

second-order term. 

 

 

Section 4 
 

1. For ( ) xf x e= , 
2 3 41 1 1

4 2 6 24
( ) 1P x x x x x= + + + + . We want to approximate the value of e, namely e

1
. 

Plugging in 1 for x gives 651 1 1
4 2 6 24 24

(1) (1) 1 1 2.708333...e f P= ≈ = + + + + = =  

 
5

4 5!
(1) (1 0)MR ≤ − . 

5

5

x xd

dx
e e= , so we need a cap on the values of xe  on the interval [0, 1]. xe  is 

increasing, so its maximum value is at x = 1: e
1
 = e < 3. We use 3 for M. The error in our 

approximation is no more than 3 1
5! 40

= . 

2. If ( ) ln(1 )f x x= + , ln(1.2) = (0.2)f . We have 
2 3 4 5

5 2 3 4 5
( ) x x x xP x x= − + − + , so that 

2 3 4 50.2 0.2 0.2 0.2
5 2 3 4 5

ln(1.2) (0.2) (0.2) 0.2 0.18233066...f P= ≈ = − + − + = . 

6

5 6! 11250000
(0.2) (0.2 0)M MR ≤ ⋅ − =  where M is a bound for (6) ( )f x  on [0, 0.2]. 6

(6) 120

( 1)
( )

x
f x −

+
= . This 

function is increasing, but negative, on [0, 0.2]. It will therefore take on its greatest value in 

magnitude at x = 0. (Look at a graph). (6) (0) 120f = − , so a suitable value for M is 120. This means 

that 120 1
5 11250000 93750
(0.5) 0.00001066...R ≤ = =  

3. We let ( ) xf x e= , and we seek an approximation for (2)f . 
2 3 4 51 1 1 1

5 2! 3! 4! 5!
( ) 1P x x x x x x= + + + + + , 

and it follows that 
2 3 4 5 1092 2 2 2

5 2 6 24 120 15
(2) 1 2 7.26666...P = + + + + + = = . 



 
6 4

5 6! 45
(2) (2 0)M MR ≤ − = . (6) ( ) xf x e= , which is an increasing function. On the interval [0, 2], its 

maximum occurs at x = 2, suggesting e
2
 for M, but that is the number we are trying to approximate. 

However, since e < 3, e
2
 < 9. So we take 9 for M. 4 9 4

5 45 5
(2)R ⋅≤ = . 

 Putting it all together, 
2109 1094 4

15 5 15 5
e− ≤ ≤ +  or 

297 121
15 15

e≤ ≤  or 26.466... 8.066...e≤ ≤  (Not a very tight 

bound, but 2 is not particularly close to 0.) 

4. The approximation would be based on 3 ( )P x , so the error will be an estimate on 3 ( 0.3)R − . 

4 27
3 4! 80,000
( 0.3) 0.3 0 MMR − ≤ ⋅ − − = . Since the sine function and all its derivatives are bounded by 1, we 

can use 1 for M. 27
3 80,000
( 0.3) 0.0003375R − ≤ =  

5. 3

2 3!
( ) ( 0)MR x x≤ − , where M is a bound for (3) ( )f x  on the interval [0, 0.1] for part (a) or on the 

interval [-0.2, 0] for part (b). ( )(3)

3
( ) 8sin 2f x x π= + . The sine factor is bounded by 1, but because of 

the coefficient, we must use 8 for M. This M-value works on any interval. 

 a. 
38

2 3!
(0.1) (0.1 0) 0.001333...R ≤ − =  

 b. 
38

2 3!
( 0.2) 0.2 0 0.0106666...R − ≤ ⋅ − − =  

6. a. 
3

2 3! 3
(1) 1MR π≤ ⋅ − . We can continue to use 1 for M as sin(x) and all its derivatives are bounded by 

1 on all intervals. Therefore 
3 51

2 6 3
(1) 1 0.000017523 2 10R π −≤ ⋅ − = ≈ × . 

 b. Now we want 
9

(1) 10
n

R
−≤ . In general, 

1
1

( 1)! 3
(1) 1

n

n n
R π +

+
≤ ⋅ − . To guarantee the required 

accuracy, we set 
1 91

( 1)! 3
1 10

n

n

π + −

+
⋅ − ≤  and solve by consulting a table of values. We determine 

that if n = 5, we are sure to compute sin(1) with the desired accuracy. We should use a fifth-

degree polynomial. (As it turns out, a fourth-degree polynomial computes sin(1) within 10
-9

 of its 

actual value. However, we would not predict that based on the Lagrange error bound. Remember 
that the error bound gives an upper bound on the amount of error to expect. There may actually 

be much less error than what you compute using the Lagrange error bound, but we cannot count 

on that.) 

7. For the Macluarin polynomial, 
1

( 1)!
(3) (3 0)

nM
n n

R
+

+
≤ ⋅ − . Taking M to be 1 since the sine function and 

all its derivatives are bounded by 1 on all intervals, this simplifies to 
13

( 1)!
(3)

n

n n
R

+

+
≤ . This expression is 

first less than 0.0001 when n = 13, indicating that we need a 13
th
-degree polynomial. 

 If instead we center our polynomial at x = π, then 
1

( 1)!
(3) 3

nM
n n

R π
+

+
≤ ⋅ − . Again, we take M = 1 and 

look for when 
1

3

( 1)!

n

n

π
+

−

+
 is first less than 0.0001. This happens when n = 3, indicating that we need a 3

rd
-

degree polynomial. 

8. 1

( 1)! ( 1)!
(1) (1 0)

nM M
n n n

R
+

+ +
≤ ⋅ − = . Since the cosine function and all its derivatives are bounded by 1 on 

all intervals, we can take M = 1. This means that 1
( 1)!

( )
n n

R x
+

≤ , which is about as simple an 

expression for the error bound as we're likely to see. We would like it to be less than 0.0001. 

Consulting a table of values, we see that this happens when n = 7, so we need a 7
th
-orderMaclaurin 

polynomial. But wait! The cosine function's Maclaurin polynomials have only even-degree terms; the 

7
th
-order polynomial is the same as the 6

th
-order polynomial. Unfortunately, the 6

th
-degree polynomial 

is not guaranteed to give the desired accuracy based on the Lagrange error bound. We err on the side 

of caution and use an 8
th
-degree Maclaurin polynomial. (As it turns out, the 6

th
-degree polynomial is 

good enough, but there is no way to know this based on the Lagrange error bound.) 



9. We want an estimate on ( )3
4n

R . As we know, ( )
1

3 3
4 ( 1)! 4

1
n

M
n n

R
+

+
≤ ⋅ − , but we need an M-value. For 

the interval 3
4
,1   . Unlike the sine, cosine, and exponential functions, the bound for M will depend on 

the derivative used. An examination of several derivatives of ( ) ln( )f x x=  indicates the following 

two facts. (1) A formula for the n
th
 derivative for n ≥ 1 is 

( 1)!( ) 1
( ) ( 1) n

nn n

x
f x

−+= − ⋅ . (2) When the 

coefficient 1( 1)n+−  is negative, ( )nf  is an increasing function, and when 1( 1)n+−  is positive, ( )nf  is 

decreasing. In either case, the largest value of ( ) ( )nf x  in magnitude will occur at the left endpoint of 

the interval: in this case at 3
4

x = . A bound for the (n + 1)
st
 derivative, then, is 

( ) ( )1

1( 1) 1 ! 4
3(3/4)

!n

nn
M n+

++ −
= = ⋅ . 

Coming back to the remainder term, we have ( ) ( ) ( ) 1

1 13 4 1 1 1
4 3 ( 1)! 4 3

! n

n n

n n n
R n +

+ +

+ ⋅
≤ ⋅ ⋅ ⋅ = . Consulting a 

table of values for this last expression, we find that it is first less than 0.0001 when n = 6. Therefore 
we need a 6

th
-degree Taylor polynomial. 

10. Using the result of Section 3, Problem #21, 
(1/2)( 1/2)1/ 2 21

2 2!
1 (1 ) 1x x x x

−+ = + ≈ + + . Therefore 

21 1
2 2 8
( ) 1P x x x= + − . If ( ) 1f x x= + , then 21.4 1 0.4 (0.4) (0.4) 1.18f P= + = ≈ = . To put bounds 

on this approximation, we compute the Lagrange error bound: 2 (0.4)R . This will require finding a 

bound for 5/2

(3) 3

8(1 )
( )

x
f x

+
=  on the interval [0, 0.4]. (3)f  is a decreasing function, so its max occurs at 

the left end of the interval. 
(3) 3

8
(0)f = , so we use that for M. 

33
2 8 3!
(0.4) (0.4 0) 0.004R

⋅
≤ ⋅ − = . We 

conclude that 1.18 0.004 1.4 1.18 0.004− ≤ ≤ +  or 1.176 1.4 1.184≤ ≤ . 

11. 
4

3 4!
( ) 0MR x x≤ − . Since the sine function and all its derivatives are bounded by 1, we let M = 1, 

giving 
4

3 4!
( )

x
R x ≤ , and we would like this to be less than 0.0005. 

4 4

4!
0.0005 0.012

x
x< ⇒ <  

0.33x⇒ < . We will have the required accuracy for x such that -0.33 < x < 0.33. 

12. 
5

4 5!
( ) 0MR x x≤ − . Since the cosine function and all its derivatives are bounded by 1, we let M = 1, 

giving 
5

4 5!
( )

x
R x ≤ . We would like this to be less than 0.00005 in absolute value to ensure accuracy to 

four decimal places. 
5 5

5!
0.00005 0.006 0.359

x
x x< ⇒ < ⇒ < . The required accuracy is guaranteed 

for -0.359 < x < 0.359. 

13. The error, 5 ( )R x , will be bounded by 
6

6!
0M x⋅ − . Since the sine function and all its derivatives are 

bounded by 1, we let M = 1. Our x-values range from 1
2
−  to 1

2
. The maximum value of 

6
0x −  for 

these x-values is (1/2)
6
. Therefore an (over)estimate of the error from a fifth-degree Maclaurin 

polynomial on this interval is ( )
6 51 1

6! 2
2.17 10

−⋅ = × . 

14. 2 ( )R x  will be bounded by 
3

3!
0M x⋅ − . We need to pick values for M and x to plug into this 

expression. Our x-values range from -0.2 to 0.2. To make sure that our error bound overestimates the 

actual error in the computation, we choose an x-value that will make the factor 
3

0x −  largest. 

Because of the absolute value bars, either +0.2 or -0.2 will do for this. M will be a bound on the 

values of 3

(3) 2

(1 )
( )

x
f x

+
=  as x ranges from -0.2 to +0.2. The largest value occurs at x = -0.2 and is 

3

(3) 2

0.8
( 0.2) 3.90625f − = = . Therefore 

33.90625
2 3!
( ) (0.2) 0.005208R x ≤ ⋅ =  for x in the interval 

[ ]0.2,0.2− . That is an (over)estimate on the greatest possible error we expect to see from the 2
nd

-

degree Maclaurin polynomial. 



  Note that this was a worst-case scenario analysis. We want to overestimate the actual error that 

we will observe. (Underestimating expected error is never a good idea.) To do this, we looked at each 
piece of the Lagrange error bound formula individually and plugged in values that made that piece as 

big as we would reasonably expect it to be. We've been a little sloppy about the intervals as a 

consequence. Normally for Lagrange error bound use, we're supposed to look at an interval in which 

the center of the polynomial is one of the endpoints. In this case, because we're looking at x-values on 
both sides of the center, we relaxed that to consider all possible x-values at once. The result is that our 

error estimate will probably be hugely exaggerated for some x-values in the interval. But that's okay; 

we're looking for the largest possible error we expect to see, and I do not believe we will see error 
greater than 0.0052. 

15. 3 ( )R x  will be bounded by 
4

4!
0M x⋅ − . M is a bound on (4) ( ) xf x e=  on the interval [-0.1, 0.1]. The 

greatest value taken on by (4) ( ) xf x e=  will be at the right endpoint of the interval since xe  is an 

increasing function. Therefore, we would use 0.1M e= , but who knows what this value is. We could 

take the easy way out and let M = 3 (e < 3, so e
0.1

 < 3 as well), but let's do a little better. 
0.1 0.5 0.54 4 2e e< < = = . Let's take M = 2. The largest value of 

4
0x −  for the interval in question is 

0.1
4
. Putting it all together, we have 

4 62
3 4!
( ) 0.1 8.333 10R x

−≤ ⋅ = × . This is the largest error we expect 

to see. (See the note in the solution to Problem 14 about overestimating error.) 

16. 10 : We used a 3
rd
-degree Taylor polynomial centered at x = 9 to approximate ( )f x x= . 

Therefore 
4

3 4! 24
(10) (10 9)M MR ≤ − = . To find a value for M, we need the biggest values (in 

magnitude) taken on by 7/2

(4) 15

16
( )

x
f x −=  on [9, 10]. We want to make the denominator small to make 

the fraction big, so we pick x = 9. 
(4)

(9) 0.0004287f = . Therefore 
50.0004287

3 24
(10) 1.8 10R

−≤ ≈ × . 

 3 10 : We used a 3
rd
-degree Taylor polynomial centered at x = 8 to approximate 3( )f x x= . 

Therefore 
4 2

3 4! 3
(10) (10 8)M MR ≤ − = . For this function, 11/3

(4) 80

81
( )

x
f x −= . To find M, we will again plug 

in the smallest x-value we can, namely 8. 
(4)

(8) 0.000482f = . Therefore 
4

3 (10) 3.2 10R
−≤ × . 

17. a. 
22

2 2
( ) 8 4( 1) ( 1)P x x x= + − − − . 2(1.4) (1.4) 9.44f P≈ = . 

 b. 
410

3 4!
(1.4) (1.4 1) 0.1066...R ≤ − =  

18. a. 
24

2 2
( ) 2 3P x x x= − + . ( 1) ( 1) 7f P− ≈ − =  

 b. 
32 1

2 3! 3
( 1) 1 0R − ≤ ⋅ − − = . Therefore, the actual value of ( 1)f −  is between 7 – 1/3 and 7 + 1/3. 

Hence, the maximum possible value of ( 1)f −  is 1
3

7 , which is less than 8.75. ( 1) 8.75f∴ − ≠ . 

19. a. 
28

2 2
( ) 0 2( 2) ( 2)P x x x= + − + − . 2(1.8) (1.8) 0.24g P≈ = − .  

 b. 
35

2 3!
( ) 1.8 2 0.0066...R x ≤ − = . The maximum possible value of (1.8)g  is -0.24 + 0.0066… = 

0.2333... 0− < . We conclude that (1.8) 0g < . 

20. 1( ) 2 5( 3)P x x= + + . 1( 2.5) ( 2.5) 2 5( 2.5 3) 4.5h P− ≈ − = + − + = . 
21

1 2!
( 2.5) ( 2.5 3) 0.125R − ≤ − + = . 

Therefore 4.5 0.125 ( 2.5) 4.5 0.125h− ≤ − ≤ +  or 4.375 ( 2.5) 4.625h≤ − ≤ . 

21. a. On the interval [0, 1.3], the maximum value of (6) ( )f x  is 2. Therefore, we take 2 for M. 
62

5 6!
( ) (1.3 0) 0.0134R x ≤ − = . This is the maximum possible error in using the 5

th
-degree 

Maclaurin polynomial. 

 b. On the interval [0, 5], the maximum absolute value of (6) ( )f x  is 4; this is our M-value. 
64

5 6!
(5) (5 0) 86.806R ≤ − = . Ugh. That's a lot of error. 



 c. The maximum absolute value of (6) ( )f x  on [3, 5] is still 4. The only change from part (b) is a 

much-needed adjustment to the center of the polynomial. 
64

5 6!
(5) (5 3) 0.3556R ≤ − = . 

22. a. The division below shows several iterations of the long division algorithm. The boxed terms are 

the remainders from one iteration; they are what the remainder would be if the division were 
stopped at that stage. (Note: In this paragraph, "remainder" is being used in the sense of division, 

not in the sense of Lagrange remainder.) 

 

2 4 6

2 2 4 6

2

2 4

2 4

4 6

4 6

6

1

1 1 0 0 0

1

0

0

x x x

x x x x

x

x x

x x

x x

x x

x

− + −

+ + + +

+

− +

− −

+

+

−

⋯

 

 Based on this division, several possible representations of ( )f x  are… 

 
2

21
1 x

x+
−  

 
4

2

2

1
1 x

x
x

+
− +  

 
6

2

2 4

1
1 x

x
x x

+
− + −  

As we can see, the left-over term after the polynomial has terminated – the remainder in the sense 

of Lagrange remainder – is given by 
2 2

2

1

2 1
( ) ( 1)

nn x
n x

R x
++

+
= − ⋅ . In other words, 

2 2

22 1
( )

n
x

n x
R x

+

+
= . 

 b. We know that 2

1

1 x+
 can be expanded as a geometric series as 2 4 61 x x x− + − +⋯ . If we stop this 

polynomial at some point, part (a) indicates what the remainder will be. Stopping the polynomial 

at degree 2n and incorporating the remainder from part (a), we have 
2 2

2 2

2 4 2 11

1 1
1 ( 1) ( 1)

nn n n x

x x
x x x

++

+ +
= − + + + − + − ⋅⋯  as desired. 

23. a. 
( 1)3 5 2 11 1

3 5 2 1
arctan

n
n

n
x x x x x

− +

+
≈ − + − + ⋅⋯ . 

 Now plug in 1 for x: 
( 1)1 1

4 3 5 2 1
arctan(1) 1

n

n
π −

+
= ≈ − + − +⋯ . 

 Multiply through by 4, and we are finished: ( )( 1)1 1
3 5 2 1

4 1
n

n
π −

+
≈ ⋅ − + − +⋯ . 

 b. Using 5 terms, we have ( )1 1 1 1
3 5 7 9

4 1 3.3397π ≈ − + − + = . This is not actually a very good estimate. 

 c. Problem 23b told us that 
2 2

2 2

2 4 2 11

1 1
1 ( 1) ( 1)

nn n n x

x x
x x x

++

+ +
= − + − + − + − ⋅⋯ . Integrating both sides, 

we find ( )
2 2

2

1( 1)3 5 2 11 1
3 5 2 1 1

0

arctan 1
n n

x
nn t

n t
x x x x x dt

++− +

+ +
= − + − + ⋅ + − ⋅ ∫⋯ . (t is just a dummy variable.) 

All but the last term of the right side of this last equation make up the (2n + 1)
st
-degree Maclaurin 

polynomial for the arctangent function. The last term is the remainder. Taking its absolute value, 

we have the desired result: 
2 2

22 1 1
0

( )
n

x

t
n t

R x dt
+

+ +
= ∫ . 



 d. For all t, 21 1t+ ≥ . Therefore 
2 2

2

2 2

1

n nt

t
t

+ +

+
≤ ; dividing 2 2nt +  by a number at least 1 will make it 

smaller. (Note that 2 2nt +  is positive for all integers n.) Now 
2 2 2 2

2 2

2 2 2 2

1 1
0 0

n n

x x

n nt t

t t
t t dt dt

+ ++ +

+ +
≤ ⇒ ≤∫ ∫  as 

long as x > 0; this is a property of definite integrals. Since 
2 2

2 1

0

( )

x

n

nR x t dt
+

+ = ∫ , it follows that 

2 2

2 1

0

( )

x

n

nR x t dt
+

+ ≤ ∫ . 

 e. 
2 2 2 3 2 31 1

2 3 2 30
0

x
x

n n n

n n
t dt t x

+ + +

+ +
= = ⋅∫ . Therefore 

2 31
2 1 2 3

( )
n

n n
R x x

+

+ +
≤ ⋅ . 

 f. We are interested in 2 1(1)
n

R +  which is 1
2 3n+

, but be careful of the 4 in Equation (1)!!! If we just 

set 2 1(1)
n

R +  less than 0.01 and solve, we will find an n-value that will approximate π/4 with error 

less than 0.01. But when we multiply by 4, the error might be as high as 0.04. To account for this, 

we need the remainder to be less than 0.01/4 = 0.0025. 

  1 1
2 3 0.0025

0.0025 2 3 400 2 3 397 2 199
n

n n n n
+

< ⇒ < + ⇒ < + ⇒ < ⇒ ≥ . 

  We need to let n = 199 in order to estimate π with the desired accuracy. That's a lot of terms for 

not very much accuracy. There are far better ways to approximate π. 

24. We take the case of x > 0 first. The error in computing xe  with a Maclaurin polynomial of degree n 

will be 
1

( 1)!
( )

nM
n n

R x x
+

+
≤ ⋅ , where M is an upper bound for the (n + 1)

st
 derivative of xe  on the 

interval [0, x]. (Absolute value bars on x are unnecessary since x > 0.) The (n + 1)
st
 derivative of e

x
 is 

just e
x
, though. Therefore we are looking for a bound on the value of e

x
 to use for M.  Since xe  is an 

increasing function, it obtains its maximum at the right hand endpoint of the interval in question. In 

other words, t xe e≤  for all t in the interval [0, x]. Since e < 3, it follows that 3x xe <  for any positive 

x-value. The upshot of all this is that we can use 3
x
 for M. Then we have 

13
( 1)!

( )
x n

x
n n

R x
+⋅

+
≤ , as desired. 

 If x is negative, e
x
 < e

0
 = 1, again because e

x
 is an increasing function. This means that we can use 1 

for M. Now 
111

( 1)! ( 1)!
( ) 0

n
n x

n n n
R x x

++

+ +
≤ − = , as desired. 

 Factorials grow larger than exponentials in the long run. Therefore, if we take n to be large enough, 

the error in computing e
x
 will be small; in fact, it can be made smaller than any desired tolerance. 

25. The Lagrange remainder for using an n
th
-degree Maclaurin approximation for xe  is 

( 1) 11
( 1)!

( ) ( ) ( 0)
n n

n n
R x f z x

+ +

+
= ⋅ ⋅ −  . But ( 1) ( )n xf x e+ =  for all n, and xe  is positive for all x. This means 

that every factor in the remainder term is positive when x is positive; ( )
n

R x  is positive for all n and 

all x > 0. Since ( ) ( ) ( )
n n

f x P x R x= + , and ( )
n

R x  is positive, ( )
n

P x  must be too small; it 

underestimates the value of xe  when x > 0. 

26. a. 
1

( 1)!
(20) 20

nM
n n

R
+

+
≤ ⋅ . Since ( ) cosf x x=  and all its derivatives are bounded by 1, we can use 1 

for M. Therefore 
120

( 1)!
(20)

n

n n
R

+

+
≤ . We require that this expression be less than 10

-3
. Using a table 

to solve 
1 320

( 1)!
10

n

n

+ −

+
≤ , we see that we require n to be at least 58. We need a 58

th
-degree Maclaurin 

polynomial for the required accuracy.  

 An n
th
-degree Maclaurin polynomial for the cosine function is missing all odd-degree terms. In 

particular, a 58
th
-degree polynomial has (58 2) 1 30÷ + =  terms. 

 b. We can simply subtract off multiples of 2π from 20 until we get a number in the desired range. 

20 6 1.1504t π= − ≈  does the trick. 



  
11

( 1)!
( )

n

n n
R t t

+

+
≤ ⋅ . Using a table to solve 

1 31
( 1)!

10
n

n
t

+ −

+
⋅ ≤ , we find that we need n to be at least 6, 

a much more manageable number! 

 c. Instead of attempting to approximate sin(100), we will find a smaller number t such that 

sin( ) sin(100)t = , again by subtracting off multiples of 2π from 100. 100 32π π π− < − < , so we 

will use 100 32t π= − . 

  
11

( 1)!
( )

n

n n
R t t

+

+
≤ ⋅ , and we require this to be less than 10

-6
. Solving 

1 6

( 1)!
10

n
t
n

+ −

+
≤  with a table, we 

find that we need n to be at least 7. (Note for comparison that to evaluate sin(100) directly with 

this level of precision requires a 275
th
-degree Maclaurin polynomial.) 

 d. Suppose we want to evaluate sin(u). We begin by replacing u with a number t between -π and π 

such that sin( ) sin( )u t= . The periodicity of the sine function guarantees that we will be able to 

find such a number t, and the same goes for the cosine function. Now the maximum distance that 

t can be from the origin is π. Therefore, the error for any t-value between -π and π is bounded by 
11

( 1)!
( )

n

n n
R t π

+

+
≤ ⋅ . (We're using 1 for M again because all derivatives of sine and cosine are 

bounded by 1.) For t-values close to 0, the actual error will be much less than this estimate; this is 
a worst-case scenario error estimate. If we use a 29

th
-degree polynomial, as suggested, we have 

30 181
29 30!

( ) 3.1 10R t π −≤ ⋅ ≈ × , which is well within the required error tolerance. In fact, 

29 171
28 29!

( ) 3.0 10R t π −≤ ⋅ ≈ × . However, the Lagrange error bound estimate for a 27
th
-degree 

Maclaurin polynomial is not quite within the required precision. So we need to use at least a 28
th
-

degree polynomial. Since the sine polynomials have only odd-degree terms, we must err on the 
side of caution and use a 29

th
-degree polynomial in general. 

27. Picking up from Problem 9, 
1

( 1)!
(5) (5 1)

nM
n n

R
+

+
≤ ⋅ − , where M is a bound for the (n + 1)

st
 derivative 

on the interval [1, 5]. For n ≥ 1, 
( 1)!( ) 1

( ) ( 1) n

nn n

x
f x

−+= − ⋅ , and the graph of ( )nf  approaches y = 0 

monotonically as x increases. Therefore the maximum of ( ) ( )nf x  must occur at x = 1. We can then 

take M to be simply ( )( 1) 1 !n + − . Now 
11! 4

( 1)! 1
(5) 4

nnn
n n n

R
++

+ +
≤ ⋅ = . Unfortunately, this expression does 

not decrease with increasing n. We cannot find an n for which the error will be guaranteed to be 

within the specified tolerance. A complete explanation for why our strategy has fallen apart will have 
to wait until we talk about intervals of convergence of Taylor series in a later section (at which point 

we will know that it was ridiculous to even attempt this problem). For now, we will have to be 

content with a graphical answer. The Taylor polynomials for ( ) ln( )f x x=  appear to be a good fit for 

the function only within about 1 unit of x = 1. For x-values more than 1 unit away from x = 1, the 

graphs of the Taylor polynomials diverge sharply from the graph of f. The graphs suggest that we 

cannot use a Taylor polynomial centered at x = 1 to approximate ln(5), and indeed that is the case. 

28. a. We will use the Maclaurin polynomial for ( ) xf x e=  with x = 0.001. Our desired error is less than 

10
-10

. By the Lagrange error bound, 
1

( 1)!
(0.001) (0.001)

nM
n n

R
+

+
≤ . We require, then, that 

1 10

( 1)!
(0.001) 10

nM
n

+ −

+
≤ , where M is a bound on the (n + 1)

st
 derivative of e

x
 – namely e

x
. We're 

working with e
x
 on a sub-interval of [0, 1], so for all t-values in the interval, 1 3te e≤ < . This 

means we can use 3 for M. (We can push it lower since e
0.001

 is much smaller than e
1
, but it turns 

out that it will make no difference in the answer to the question.) 

 Using a table of values to solve 
1 103

( 1)!
0.001 10

n

n

+ −

+
⋅ ≤ , we find that n must be at least 3. 

 A third-degree Maclaurin polynomial is required to obtain the desired accuracy for computing 
0.001e . 



 b. Now x = 14. We require that 
1 10

( 1)!
14 10

nM
n

+ −

+
⋅ ≤ . A suitable M-value is 3

14
 (see Problem 24). 

Solving 
14 1 103

( 1)!
14 10

n

n

+ −

+
⋅ ≤  with a table, we find that we must take n to be at least 66. We need a 

66
th
-degree Maclaurin polynomial to obtain the desired accuracy for computing e

14
. 

 c. 
14 4 93

3 4!
(14) 14 7.7 10R ≤ ⋅ ≈ × ; the error is stupendously large in this situation. 

 d. 
67 2963

66 67!
(0.001) 0.001 8 10R

−≤ ⋅ ≈ × , a ridiculous level of precision—one that the calculator 

cannot actually effectively use. 

29. a. We assume that 0 < e < 3 (which can be proved later). We further assume (for later contradiction) 

that 
p

q
e = , where p and q are positive integers. Let n be an integer greater than q and greater than 

3, and let ( ) xf x e= . Then 
2 31 1 1

2! 3! !
( ) ( ) 1

n

n n
f x P x x x x x≈ = + + + + +⋯ . By Taylor's Theorem, 

( ) ( ) ( )
n n

f x P x R x= + , or 
2 31 1 1

2! 3! !
1 ( )

x n

nn
e x x x x R x= + + + + + +⋯ . 

 Now plug in x = 1. This gives 
1 1 1
2! 3! !

1 1 (1)
p

nq n
e R= = + + + + + +⋯  

 as desired. 

 b. Multiplying through by n! gives 

( )1 1 1
2! 3! !

! ! 1 1 ! (1)
p

nq n
n n n R⋅ = ⋅ + + + + + + ⋅⋯ . 

  Since n is greater than q, n! has q as a factor. Therefore !
p

q
n⋅  must be an integer; the denominator 

q will cancel with a factor of n!. 

  On the right side, ( ) ! ! !1 1 1
2! 3! ! 2! 3! !

! 1 1 ! ! n n n

n n
n n n⋅ + + + + + = + + + + +⋯ ⋯  is also an integer. This means 

that Equation (3) has the form 

Integer = Integer + ! (1)
n

n R⋅ . 

  For this equation to be true, ! (1)
n

n R⋅  must also be an integer. If we can show that ! (1)
n

n R⋅  is not 

on integer, then we will have a contradiction. In that case we reject the assumption that e can be 

expressed as a fraction of integers p/q. The conclusion will be that e is irrational. 

 c. Using the Lagrange error bound, 
1

( 1)! ( 1)!
(1) (1 0)

nM M
n n n

R
+

+ +
≤ ⋅ − = . Since ( ) xf x e=  is increasing on 

[0, 1], we can use e
1
 = e as our M-value. We know / have assumed that e < 3, so 3 is also a 

suitable M-value. This gives 3
( 1)!

(1)
n n

R
+

≤ , as desired. 

 d. Multiplying the inequality from part (c) by n! gives ! 3 3
( 1)! 1

! (1) n
n n n

n R ⋅
+ +

⋅ ≤ = . (The n! can slide into 

the absolute value bars because it is positive.) But recall that n was chosen to be larger than 3. 

Therefore the right side of this inequality must be a number between 0 and 1, and it follows that 

so must ! (1)
n

n R⋅ . (The absolute value bars are proving to be pretty handy here. Without them, 

we could only conclude that ! (1)
n

n R⋅  was less than 1. It could still be an integer… just a negative 

one. But because the absolute value bars trap the quantity in the non-negative world, we can 

conclude that ! (1)
n

n R⋅  is not an integer.) Since ! (1)
n

n R⋅  is not an integer, ! (1)
n

n R⋅  is not either. 

Based on the comments in part (b), this completes the proof that e is irrational. 

30. a. ( 1) ( 1) ( 1)( ) ( ) ( ) ( ) ( ) ( )n n n

n n n n
f x P x R x f x P x R x+ + += + ⇒ = +  

 However, Pn(x) is an n
th
-degree polynomial, so ( 1) ( ) 0n

n
P x+ = . Substituting 0 for ( )

n
P x  in the 

previous equation gives ( 1) ( 1)( ) ( )n n

n
f x R x+ += . For a number t in [a, x], we have 

( 1) ( 1)( ) ( )n n

n
f t R t+ += , as desired. 



 b. By hypothesis, ( 1) ( )nf t+  is bounded by M for [ ],t a x∈ . This means that ( 1) ( )nM f t M+− ≤ ≤ . 

Substituting ( 1) ( )n

n
R t+  for ( 1) ( )nf t+  as justified by part (a) gives ( 1) ( )n

n
M R t M+− ≤ ≤ . 

 c. It will become clear in the integration why it is important to know ( ) ( )n

n
R a ; for now let's 

determine its value. Differentiating ( ) ( ) ( )
n n

f x P x R x= +  n times gives 
( ) ( ) ( )( ) ( ) ( )n n n

n n
f x P x R x= + . We plug in a to obtain ( ) ( ) ( )( ) ( ) ( )n n n

n n
f a P a R a= + . But by the 

definition of a Taylor polynomial, ( ) ( )( ) ( )n n

n
f a P a= . Therefore ( ) ( ) 0n

n
R a = . 

  Now for the integration… 
( 1)

( 1)

( )

( ) ( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n

n

x x x

n

n

a a a

xx xn

na aa

n n

n n

n

n

M R t M

Mdt R t dt Mdt

M t R t Mt

M x a R x R a M x a

M x a R x M x a

+

+

− ≤ ≤

− ≤ ≤

− ≤ ≤

− − ≤ − ≤ −

− − ≤ ≤ −

∫ ∫ ∫
 

 d. Replace x with the dummy variable t in the result of part (c) and integrate again. Note that for any 

k such that 0 ≤ k ≤ n, ( ) ( ) 0k

n
R a =  since the k

th
 derivative of f and Pn will agree perfectly at the 

center. (This is a generalization of the observation in part (c) about ( ) ( )n

n
R a .) 

2 2

2 2

2 2

( )

( )

( ) ( )( 1)

2 2

( ) ( )( 1) ( 1)

2 2

( ) ( )( 1)

2 2

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )

( )

n

n

x x x

n

n

a a a

x xxt a t an

n
aa a

t a t an n

n n

t a t an

n

M t a R t M t a

M t a dt R t dt M t a dt

M R t M

M R x R a M

M R x M

− −−

− −− −

− −−

− − ≤ ≤ −

− − ≤ ≤ −

− ⋅ ≤ ≤ ⋅

− ⋅ ≤ − ≤ ⋅

− ⋅ ≤ ≤ ⋅

∫ ∫ ∫
 

  Only n – 1 integrations left to go! We omit the details here (which can be filled in using 

mathematical induction), but the pattern should be clear. With each integration, ( ) ( )k

n
R x  becomes 

( 1) ( )k

n
R x− . Similarly, the factors 

( )

!

nx a

n

−
 become 

1( )

( 1)!

n
x a

n

+−

+
. Therefore, we will ultimately obtain 

1 1

( 1)! ( 1)!
( ) ( ) ( )

n nM M
nn n

x a R x x a
+ +−

+ +
− ≤ ≤ − . 

 e. The result of part (d) is exactly the same as the statement 
1

( 1)!
( ) ( )

nM
n n

R x x a
+

+
≤ − . Implicit in our 

argument so far has been the assumption that x > a. This need not be the case, though. (Some 
house-keeping details in the proof are necessary to take care of the x < a case, but they are just 

details.) To make sure our bounding value is actually positive, we replace (x – a) with |x – a| so 

that 
1

( 1)!
( )

nM
n n

R x x a
+

+
≤ − . This completes the argument. 

 

 

Section 6 
 

1. 
2

2n

n
n

a = , so 
2

1

( 1)

1 2n

n

na +

+

+ = . 
2 2 2

1 2 2 1 2

( 1) ( 1) ( 1)2 2 1 1
2 22 2

lim lim lim 1
n n

n n

n n n

n n nn n n
+ +

+ + +

→∞ →∞ →∞
⋅ = ⋅ = ⋅ = < . The series converges. 

2. 
4n

n
n

a = , so 1

1
1 4n

n
n

a +

+
+ = . 1 1

1 1 14 4 1 1
4 44 4

lim lim lim 1
n n

n n

n n n

n n n
n n n

+ +

+ + +

→∞ →∞ →∞
⋅ = ⋅ = ⋅ = < . The series converges. 



3. 1 1

3 32 1
2 33 3

lim lim 1
n n

n n
n n

+ +
→∞ →∞

⋅ = = < . The series converges. 

4. 
2 2

2 2

1
1( 1) ( 1)

lim lim 1n n

n nn n+ +→∞ →∞
⋅ = = . The ratio test is inconclusive. 

5. ( 1)! (2 )! ( 1)! (2 )! ( 1)

(2 2)! ! ! (2 2)! (2 2)(2 1)
lim lim lim 0 1

n n n n n

n n n n n n
n n n

+ + +

+ + + +
→∞ →∞ →∞

⋅ = ⋅ = = < . The series converges. 

6. 
[ ]

( )

2

2

( 1)! (2 )! (2 )! ( 1)! ( 1)! ( 1)( 1) 1
(2 2)! (2 2)! ! ! (2 2)(2 1) 4!

lim lim lim 1
n n n n n n n

n n n n n nnn n n

+ + + + +

+ + + +
→∞ →∞ →∞

⋅ = ⋅ ⋅ = = < . The series converges. 

7. 
3 3

3 3

2 2
1 1( 1) ( 1)

lim lim 1n n n n

n nn nn n

+ +
+ ++ +→∞ →∞

⋅ = ⋅ = . The ratio test is inconclusive. 

8. (2 1)! (2 1)!1 1
(2 3)! 1 (2 3)! (2 3)(2 2)

lim lim lim 0 1
n n

n n n n
n n n

+ +

+ + + +
→∞ →∞ →∞

⋅ = = = < . The series converges. 

9. 
1 1

1 1

( 1) 4 5 1 5 14 4 4
5 55 4 4 5

lim lim lim 1
n n nn

n n n n

n n n

n nnn n n

+ +

+ +

+ ⋅ + +

⋅→∞ →∞ →∞
⋅ = ⋅ ⋅ = ⋅ = < . The series converges. 

10. 1 1

( 2)! ( 2)!3 3 1
( 1)! 1 ( 1)! 1 3( 1) 3 3

lim lim lim ( 2) 1
n n

n n

n nn n n

n n n nnn n n
n+ +

+ +

+ + + ++ ⋅→∞ →∞ →∞
⋅ = ⋅ ⋅ = ⋅ + ⋅ = ∞ >  The series diverges. 

11. 
1 1(2 1)! (2 1)!4 4 1

(2 1)! (2 1)! (2 1)(2 )4 4
lim lim lim 4 0 1

n n

n n

n n

n n n n
n n n

+ +− −

+ + +
→∞ →∞ →∞

⋅ = ⋅ = ⋅ = < . The series converges. 

12. 
1 1( 1) ( 1) ( 1) ( 1)! ! 11

( 1)! ( 1)! 1 1
lim lim lim lim

n n n

n n n

n n n nn n n

n n n nn n nn n n n

+ ++ + + ⋅ + +
+ + + +

→∞ →∞ →∞ →∞
⋅ = ⋅ = ⋅ = ( ) ( )( 1) 1 1lim lim 1 1

n

n

n nn n

n nn n n
e

+ +

→∞ →∞
⋅ = = + = > . The 

series diverges. 
Particular approaches to problems 13-17 may vary. The solutions presented here are not necessarily 

unique. 

13. 2
6

n
n n

a +
+

= . 2
6

lim lim 1 0n
n n

n n
a +

+
→∞ →∞

= = ≠ . The series diverges by the n
th
 term test. 

14. 3
!

n

n n
a = . 

1 1
1 3 ! 3 ! 3

( 1)! ( 1)! 13 3
lim lim lim lim 0 1

n n
n

n n
n

a n n

a n n n
n n n n

+ +
+

+ + +
→∞ →∞ →∞ →∞

= ⋅ = ⋅ = = < . The series converges by the ratio test. 

15. The series is geometric with 1 1
3 3

1r −= = < . The series converges by the geometries series test. 

16. This is the harmonic series. It diverges. 

17. 5

!

2
lim lim 0n

n nn n
a

→∞ →∞
= = ∞ ≠ . The series diverges by the n

th
 term test. 

18. a. 1 1
4

lim 1n

n

a

a
n

+

→∞
= < . The series converges by the ratio test. 

 b. 1

1

1/

1/
lim lim 4 1n n

n n

a a

a a
n n

+

+→∞ →∞
= = > . The series diverges by the ratio test. 

 c. 1 1( 1) 1 1
4

lim lim 1 1n n

n n

n a an

na n a
n n

+ ++ +

→∞ →∞
= ⋅ = ⋅ < . The series converges by the ratio test. 

 d. 
3 3

1 1

3 3

( 1) ( 1) 1
4

lim lim 1 1n n

nn

n a an

an a nn n

+ ++ +

→∞ →∞
= ⋅ = ⋅ < . The series converges by the ratio test. 

 e. 1 1/ ( 1) 1
/ 1 4

lim lim 1 1n n

n n

a n an

a n n a
n n

+ ++

+
→∞ →∞

= ⋅ = ⋅ < . The series converges by the ratio test. 

 f. 
( )

( )

2

1 1 1

2

1
16

lim lim 1n n n

n n
n

a a a

a aan n

+ + +⋅

⋅
→∞ →∞

= = < . The series converges by the ratio test. 

 g. 
1 1

1 12 2 1
42 2

lim lim 2 1
n n

n n

n n
nn

a a

aan n

+ +
+ +

→∞ →∞
= ⋅ = ⋅ < . The series converges by the ratio test. 

 h. 
1 1

1 15 5 1
45 5

lim lim 5 1
n n

n n

n n
nn

a a

aan n

+ +
+ +

→∞ →∞
= ⋅ = ⋅ > . The series diverges by the ratio test. 

19. 1 1

1 1 1 1lim lim 1
n n

n n

n nr r

n n r rr rn n
+ +

+ +

→∞ →∞
⋅ = ⋅ = ⋅ = . If r > 1, as given, then 1/r < 1. In this case, the series converges by 

the ratio test. (Further note that if 0 < r < 1, then 1/r > 1 and the series will diverge by the ratio test. If 

r = 1, the series diverges by the n
th
 term test. Negative r-values will have to wait until Section 8.) 

20. a. This is a power series; center is x = -2. 
 b. This is not a power series. 

 c. This is a power series; center is x = 3. 

 d. This is not a power series. 



 e. This is a power series; center is x = -1. 

 f. This is not a power series. 
21. a. The center of the series is 0, and the series converges at x = -2, which is two units away. The 

smallest possible radius of convergence is 2. 

 b. The series diverges at x = 5, which is five units from the center. The largest possible radius of 

convergence is 5. 
 c. Definitely converges (within 2 units of the center): -1, 0, 1 

  Definitely diverges (more than 5 units from the center): -8 

  Cannot be determined (between 2 and 5 units, inclusive, from the center): -5, 2, 4 
22. a. The center of the series is 3, and the series converges at x = 0, which is three units away. The 

smallest possible radius of convergence is 3. 

 b. The series diverges at x = -2, five units from the center. The largest possible radius of 
convergence is 5. 

 c. Definitely converges (within 3 units of the center): 2, 3, 5 

  Definitely diverges (more than 5 units from the center): -3, 9 

  Cannot be determined (between 3 and 5 units, inclusive, from the center): -1, 6, 8 
23. a. No. [-5, 5] is symmetric about 0, but the center of the series is -1. The interval of convergence of 

the series must be symmetric about the center (give or take the endpoints). 

 b. No. This interval is not symmetric about x = -1. Also, it doesn't even contain x = 5 in the interval 
of convergence! 

 c. Yes. This interval is symmetric about x = -1 (give or take the endpoints) and contains x = 5. 

 d. Yes. This interval is symmetric about x = -1 (give or take the endpoints) and contains x = 5. 
24. The new series is the derivative of the original series and therefore has the same radius of 

convergence. R = 5. 

25. No! The set of x-values for which a power series converges is a single interval. At best, the situation 

described here is of a series that converges for two different intervals separated by x = 6. That can't 
happen with a power series. 

26.  This power series is geometric with 
5
xr = . It converges if 

5
1x < , equivalently 5x < . The radius of 

convergence is 5. 

27. ( 2)

2

n

n

x

n n
a

−

⋅
= . 

1 1

1 1

2( 2) ( 2)2 2 1
1 1 2 2( 1) 2 ( 2) 2 ( 2)

lim lim lim ( 2)
n nn n

n n n n

xx xn n n

n nn x xn n n
x

+ +

+ +

−− −⋅
+ ++ ⋅ − −→∞ →∞ →∞

⋅ = ⋅ ⋅ = ⋅ ⋅ − = . We require 
2

2
1

x−
<  for 

convergence, or equivalently 2 2x − < . The radius of convergence is 2. 

28. 
1(4 )

(4 )
lim 4 4

n

n

x

xn
x x

+

→∞
= = . 1

4
4 1x x< ⇒ < . The radius of convergence is 1/4. 

29. 
1 1

1 1

4( 4) ( 4)3 3 1
1 1 3 3( 1) 3 ( 4) 3 ( 4)

lim lim lim ( 4)
n nn n

n n n n

xx xn n n

n nn x xn n n
x

+ +

+ +

++ +⋅
+ ++ ⋅ + +→∞ →∞ →∞

⋅ = ⋅ ⋅ = ⋅ ⋅ + = . 
4

3
1 4 3

x
x

+
< ⇒ + < . The radius of 

convergence is 3. 

30. 
1 1 12 2 1 2

2 2 2

3 ( 1) ( 1)3

( 1) 3 ( 1) ( 1) 3 ( 1) ( 1)
lim lim lim 3 ( 1) 3 1

n n nn

n n n n

x xn n n

n x n x nn n n
x x

+ + ++⋅ + +

+ ⋅ + + + +→∞ →∞ →∞
⋅ = ⋅ ⋅ = ⋅ ⋅ + = + . 1

3
3 1 1 1x x⋅ + < ⇒ + < . 

The radius of convergence is 1/3. 

31. 
1 3 3

3 1 3

( 1)! 4

( 1) 4 ! ( 1)
lim lim

n n

n n

n x n n

n n x nn n

+

+

+ ⋅ ⋅

+ ⋅ ⋅ +→∞ →∞
⋅ =

1

1

( 1)!4 1
! 44

lim ( 1) 1
nn

n n

n x

n x n
n x

+

+

+

→∞
⋅ ⋅ ⋅ = ⋅ + ⋅ = ∞ > . The radius of convergence of 

this series is 0. The series converges only at its center. 

32. 
1 12 2

2 2

( 2) ( 5) ( 2) ( 5)

( 1)( 1) ( 1) ( 5) ( 1) ( 5)
lim lim 5

n n

n n

n x n xn n

nn n x n xn n
x

+ ++ ⋅ − + −

++ + ⋅ − + −→∞ →∞
⋅ = ⋅ ⋅ = − . We require that 5 1x − < , so the radius of 

convergence is 1. 

33. This is a geometric series with 5
3

xr += . It converges as long as 5
3

1x+ < , equivalently, 5 3x + < . The 

radius of convergence of the series is 3. 



34. 
1 1 112 ( 1) ( 1)! !2 1
( 1)! ( 1)! 12 ( 1) 2 ( 1)

lim lim lim 2 ( 1) 0 1
n n nn

n n n n

x xn n

n n nx xn n n
x

+ + ++⋅ − −

+ + +⋅ − −→∞ →∞ →∞
⋅ = ⋅ ⋅ = ⋅ ⋅ − = < . This series converges for all x. 

Its radius of convergence is ∞. 

35. 
1 1 2 2 1 2

2 2 2

( 1)

( 1) ( 1) ( 1) ( 1)
lim lim lim

n n n

n n n

x n n x n

n x n x nn n n
x x

+ + +− ⋅

+ − ⋅ + +→∞ →∞ →∞
⋅ = ⋅ = ⋅ = . We require that 1x < , so the radius of 

convergence is 1. 

36. Note first that cos( ) ( 1)nnπ = − . When we take the absolute values, this factor will be irrelevant. 

 
( ) 1 1

1 1

cos ( 1) ( 2) ( 2)3 3 2
33 cos( ) ( 2) 3 ( 2)

lim lim
n nn n

n n n n

n x x x

n x xn n

π

π

+ +

+ +

+ ⋅ + + +

⋅ + +→∞ →∞
⋅ = ⋅ = . 2

3
1 2 3x x+ < ⇒ + < . The radius of 

convergence is 3. 

37. 
2 2 2 2 2

1 2 2

( 1) ( 4) ( 4) 2 24 4 4
4 4 4 4 4 4( 1) ( 4) ( 4)

lim lim lim ( 4) ( 4)
n n n

n n n

x xn n n

n n nx xn n n
x x

+ + +

+

− ⋅ − −

+ + +− ⋅ − −→∞ →∞ →∞
⋅ = ⋅ = ⋅ − = − . 

2
( 4) 1 4 1x x− < ⇒ − < . 

The radius of convergence is 1. 

38. 
1 1! !

( 1)! ( 1)! 1
lim lim lim 0 1

n n

n n

x n n x x

n n nx xn n n

+ +

+ + +
→∞ →∞ →∞

⋅ = ⋅ = = < . This series converges for all x. The radius of 

convergence is ∞. 

39. 
1 2 3 2 3

2 1 2 1

( 1) (2 1)! (2 1)! 21
(2 3)! (2 3)! (2 3)(2 2)( 1)

lim lim lim 0 1
n n n

n n n

x n n x

n n n nx xn n n
x

+ + +

+ +

− + +

+ + + +−→∞ →∞ →∞
⋅ = ⋅ = ⋅ = < . This series converges for all x. The 

radius of convergence is ∞. 

40. 
1 2 2 2 2

2 2

( 1) (2 )! (2 )! 21
(2 2)! (2 2)! (2 2)(2 1)( 1)

lim lim lim 0 1
n n n

n n n

x n n x

n n n nx xn n n
x

+ + +−

+ + + +−→∞ →∞ →∞
⋅ = ⋅ = ⋅ = < . This series converges for all x. The 

radius of convergence is ∞. 

41. The graph of (5 )y f x=  is like that of ( )y f x= , except that it has been compressed horizontally by a 

factor of 5. The radius of convergence of the power series will be similarly compressed. The radius is 

15 5 3÷ = . 

42. Because the radius of convergence of the first series is R, we know from the ratio test (applied to the 

first series) that 
1

1 ( )

( )
lim 1

n
n

n
n

c x a

c x an

+
+ −

−→∞
<  whenever x a R− < . Now we apply the ratio test to the second 

series: 
1

1( 1) ( ) 1

( )
lim lim

n
n

n
n

n c x a n

nnc x an n

+
++ − +

−→∞ →∞
=

1 1
1 1( ) ( )

( ) ( )
lim

n n
n n

n n
n n

c x a c x a

c x a c x an

+ +
+ +− −

− −→∞
⋅ = . This last limit is still less than 1 

when x a R− < . The radius of convergence of the second series is also R. 

43. a. 1
3 33 3

lim lim lim lim 1
n n

n n n

n nnn n
n

n n n n
a

→∞ →∞ →∞ →∞
= = = = < . This series converges. 

 b. 
( )

3 3

22 1
1

lim lim 1
n

n

n
nn n n→∞ →∞

= = = . The root test is inconclusive. 

 c. ( )2 1 2 1lim lim 2 1
n

n nn
n n

n n

+ +

→∞ →∞
= = > . This series diverges. 

 d. 1 1lim lim 0 1n
n

nnn n→∞ →∞
= = < . This series converges. 

44. a. ( ) ( ) ( ) ( )3 3 3 3 3 3 3 3
1 1 2 2 3 3 4

1
n n

n

∞

+
=

− = − + − + − +∑ ⋯ . This series is telescoping. The general partial sum is 

given by 3
1

3
n n

s
+

= − , which converges to 3 as n → ∞ . 

 b. 
1

1 (3 )!2 2
(3 3)! (3 3)(3 2)(3 1)2

lim lim lim 0 1
n

n

n
n

a n

a n n n n
n n n

+
+

+ + + +
→∞ →∞ →∞

= ⋅ = = < . This series converges by the ratio test. 

 c. We can use either the ratio test or our new friend from Problem 43: the root test. I will use the 

latter. 1 1 1lim lim lim 1n
n n

n e een n n
a

→∞ →∞ →∞
= = = < . This series converges by the root test. 

 d. 3 1

3
lim lim 1 0

n

nn
n n

a +

→∞ →∞
= = ≠ . This series diverges by the n

th
 term test. 

 e. This series is geometric with 3
4

1r = < . The series converges by the geometric series test. 



 f. 2lim lim 0
n

n n
n n

a
→∞ →∞

= = ∞ ≠ . This series diverges by the n
th
 term test. (The ratio test could also be 

used.) 

45. a. In this series we have 
1 3 5 (2 1)

2 4 6 (2 )

n

n n
a

⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅
= ⋯

⋯
, so 

1 3 5 (2 1)(2 1)

1 2 4 6 (2 )(2 2)

n n

n n n
a

⋅ ⋅ ⋅ ⋅ − +

+ ⋅ ⋅ ⋅ ⋅ +
= ⋯

⋯
. It follows that 

1

1 3 5 (2 1)1 3 5 (2 1) 2 4 6 (2 )(2 2)

2 4 6 (2 ) 1 3 5 (2 1)(2 1)
n

n

na n n n

a n n n+

⋅ ⋅ ⋅ ⋅ −⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − +
= ⋅ =

⋯⋯ ⋯

⋯ ⋯ 2 4 6 (2 )n⋅ ⋅ ⋅ ⋅⋯

2 4 6 (2 )n⋅ ⋅ ⋅ ⋅
⋅

⋯ (2 2)

1 3 5 (2 1)

n

n

+

⋅ ⋅ ⋅ ⋅ −⋯

2 2
2 1(2 1)

n

nn

+
++

= . Now we are ready to evaluate 

the limit. 

 ( ) ( )
1

2 2 1 1
2 1 2 1 2

lim 1 lim 1 lim 1n

n

a n

a n n
n n n

n n n
+

+
+ +

→∞ →∞ →∞

   − = − = ⋅ = <    
. This series diverges. 

 b. 
2 4 6 (2 )

5 7 9 (2 3)

n

n n
a

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ +
= ⋯

⋯
 and 

2 4 6 (2 )(2 2)

1 5 7 9 (2 3)(2 5)

n n

n n n
a

⋅ ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ ⋅ + +
= ⋯

⋯
, so 

1

2 4 6 (2 )
n

n

na

a +

⋅ ⋅ ⋅ ⋅
=

⋯

5 7 9 (2 3)n⋅ ⋅ ⋅ ⋅ +⋯

5 7 9 (2 3)n⋅ ⋅ ⋅ ⋅ +
⋅

⋯ (2 5)

2 4 6 (2 )

n

n

+

⋅ ⋅ ⋅ ⋅⋯

2 5
2 2(2 2)

n

nn

+
++

= . 

  ( ) ( )
1

2 5 3 3
2 2 2 2 2

lim 1 lim 1 lim 1n

n

a n

a n n
n n n

n n n
+

+
+ +

→∞ →∞ →∞

   − = − = ⋅ = >    
. This series converges. 

 c. 
2 5 8 (3 1)

4 7 10 (3 1)

n

n n
a

⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ +
= ⋯

⋯
 and 

2 5 8 (3 1)(3 2)

1 4 7 10 (3 1)(3 4)

n n

n n n
a

⋅ ⋅ ⋅ ⋅ − +

+ ⋅ ⋅ ⋅ ⋅ + +
= ⋯

⋯
, so 

1

2 5 8 (3 1) 4 7 10 (3 1)(3 4) 3 4
4 7 10 (3 1) 2 5 8 (3 1)(3 2) 3 2

n

n

a n n n n
a n n n n+

⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ + + +
⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − + +

= ⋅ =⋯ ⋯

⋯ ⋯
. 

  ( ) ( )
1

3 4 2 2
3 2 3 2 3

lim 1 lim 1 lim 1n

n

a n

a n n
n n n

n n n
+

+
+ +

→∞ →∞ →∞

   − = − = ⋅ = <    
. This series diverges. 

 d. 
2/3

2 4 6 (2 )

5 7 9 (2 3)

n

n n
a

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ +
 =  

⋯

⋯
 and 

2/3
2 4 6 (2 )(2 2)

1 5 7 9 (2 3)(2 5)

n n

n n n
a

⋅ ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ ⋅ + +
 =  

⋯

⋯
, so 

1

2/3
2 4 6 (2 ) 5 7 9 (2 3)(2 5)

5 7 9 (2 3) 2 4 6 (2 )(2 2)
n

n

a n n n

a n n n+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + +

⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +
 = ⋅ 

⋯ ⋯

⋯ ⋯
 or 

( )
1

2/32 5
2 2

n

n

a n

a n+

+
+

= . Now for the limit. ( ) ( )( )
1

2/32 5
2 2

lim 1 lim 1 1n

n

a n

a n
n n

n n
+

+
+

→∞ →∞

  − = − =    
. The simplest way to 

show that this limit equal 1 is to use a CAS, but I guess that's not why you look in a solution 

manual. Okay. Here we go. 

  First note that the limit here has the indeterminate form 0∞ ⋅ . Clearly n goes to ∞. Furthermore, 

since 2 5
2 2

n

n

+
+

 goes to 1, ( )
2/32 5

2 2
1n

n

+
+

−  goes to 0. If we rewrite the multiplication by n as division by 

1/n, then we can use l'Hospital's rule along with a lot of algebra. 

  

( )( ) ( )

( )

( )

2

2

2 1/3 2

2 1/3 5/3 1/3

2 2

1/3
5 6

2/32 5
2/3 2 22 5

2 2 1

1/32 5 62
3 2 2 (2 2)

1

4 (2 2) 4

(2 2) (2 5) (2 2) (2 5)

4 4

(2 2) (2 5) 64 lower order 

1
lim 1 lim

lim

lim lim

lim lim

n
nn

n
n n

n

n
n n

n
n

n n n

n n n nn n

n n

n nn n n

n
+
++

+
→∞ →∞

−+ −
+ +

−→∞

⋅ +

+ + + +→∞ →∞

→∞ →∞+ + +

− − =  

⋅
=

= =

= =
( )

1/3
terms

 

  It should be clear that this last form of the limit is equivalent to 
2

2

4

4
lim n

nn→∞
, the lower order terms 

being inconsequential as n → ∞ . Hence, we have the desired result, that the limit is 1. 

  Unfortunately after all that effort, since the limit is 1, the Raabe test is inconclusive for this series. 

46. 1 3 5 (2 1)

2 5 8 (3 1)

n

n n
a

⋅ ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ ⋅ −
= ⋯

⋯
 and 

1 3 5 (2 1)(2 1)

1 2 5 8 (3 1)(3 2)

n n

n n n
a

⋅ ⋅ ⋅ ⋅ − +

+ ⋅ ⋅ ⋅ ⋅ − +
= ⋯

⋯
, so 1 1 3 5 (2 1)(2 1) 2 5 8 (3 1) 2 1

2 5 8 (3 1)(3 2) 1 3 5 (2 1) 3 2
n

n

a n n n n
a n n n n

+ ⋅ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ − +
⋅ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ − +

= ⋅ =⋯ ⋯

⋯ ⋯
. 

 1 2 1 2
3 2 3

lim lim 1n

n

a n

a n
n n

+ +
+

→∞ →∞
= = < . This series converges by the ratio test. 

47. a. We start by ignoring the 2. Long-term, it will not matter. We apply the ratio test to the absolute 

value of the general term of the series. 
2 1 13 1 3 1

1

3 2 3 2

( 1) (2 1)!! ( 4) (2 1)!! ( 4)! 2 ! 2 1 1
(2 3)!! ( 1)! 1 8( 1)! 2 ( 1) (2 3)!! ( 4) 2 ( 4)

(2 1) ( 4)
n n nn n

n

n n n n n
n

a n x n xn n

a n n nn n x x
n x

+ + +− −
+

+ +

− ⋅ − ⋅ − − −⋅
− + ++ ⋅ − ⋅ − ⋅ − −

= ⋅ = ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ −  

 And now for the limit: 1
42 1 4

1 8 4
lim limn

n

xa n x

a n
n n

+ −− −
+

→∞ →∞
= ⋅ = . 

4

4
1 4 4

x
x

−
< ⇒ − < . The radius of 

convergence for this power series is 4. 



 b. 3 1

(2 3)!! 4

! 2

n

n

n

n n
a −

− ⋅

⋅
=  and 

1

3 2

(2 1)!! 4

1 ( 1)! 2

n

n

n

n n
a

+

+

− ⋅

+ + ⋅
= , so 

3 2 3 2

3 1 1 1 3 1
1

(2 3)!! 4 ( 1)! 2 (2 3)!! ( 1)! 4 2
(2 1)!! !! 2 (2 1)!! 4 4 2

n n n n
n

n n n n
n

a n n n n

a n nn n

+ +

− + + −
+

− ⋅ + ⋅ − +

−⋅ − ⋅
= ⋅ = ⋅ ⋅ ⋅ . Simplifying 

gives 1 1 2 21 1
2 1 4 2 1 2 1

( 1) 8 2n

n

a n n
a n n n

n+ + +
− − −

= ⋅ + ⋅ ⋅ = ⋅ = . Now we are ready to evaluate the limit in the Raabe 

test: ( ) ( )
1

2 2 3 3
2 1 2 1 2

lim 1 lim 1 lim 1n

n

a n

a n n
n n n

n n n
+

+
− −

→∞ →∞ →∞

   − = − = ⋅ = >    
. By the Raabe test, this series 

converges. 

 c. If we ignore the alternating factor, then we have exactly the same general term as before. Since 

the series in part (b) converged, this series converges as well. 

 d. The power series converges for 0 8x≤ ≤ . 

48. This series is geometric with r = sin(x). It converges as long as sin 1r x= < . Specifically, the series 

converges as long as 
2

x kπ π≠ +  (where k is an integer). The series does not converge on an interval. 

Instead it converges on infinitely many distinct intervals. 

 Below is a graph of 1
1 sin( )

( )
x

f x
−

=  (in black, only really visible at the bottom of each trough, where 

the graphs diverge), the 10
th
 partial sum of the series (in green), the 50

th
 partial sum (in purple), and 

the 100
th
 partial sum (in blue). 

  
49. a The general term cannot be written, even by lots of algebra, in the form ( )n

n
c x a− . 

 b. This series is, however, geometric with a = 1 and 
2 13
12

xr −= . As long as 1r < , the series 

converges to 
( )

2 2213
12

1 12 12
( )

251 12 13x
f x

xx−
= = =

−− − −
. 

 c. The series converges when 
2 13
12

1x − < . 
2 213
12

1 13 12x x− < ⇒ − <  or 212 13 12x− < − < . Adding 13 

gives 21 25x< < . Square-rooting (and being careful of signs and such), we find that the series 

converges on the two separate intervals 5 1x− < < −  and 1 5x< < . 

 d. Here is a graph of the 10
th
 partial sum (in green) along with ( )f x  (in black). 



   

50. a. 
1 1 1

1 1 1 1

1 1
( )

1 1 1

x x x

x x x x

f x
x x x

− − −

− − −
= = ⋅ = =

− − − ⋅ −
 

 b. We have a = -1/x and r = 1/x. Therefore 2 3

1 1 1 1 1

1

( ) n nx x x x x
n

f x
∞

− −

=

= − − − − − =∑⋯ ⋯ . The powers of x 

are negative integers, not positive integers. This means that the series is not a power-series. 
Conceptually, it is not "polynomial-like." 

 c. The graph below shows the power series in green and the Laurent series in purple. Both graphs 

are of the 25
th
 partial sum. 

   

51. 
3 4 52 2 2 2

3! 4! 5! !
( )

n
x x x x

n
y f x= = + + + + +⋯ ⋯ . It follows that 

2 3 4 16 8 10 2
3! 4! 5! !

n
x x x n x

n
y

−⋅′ = + + + + +⋯ ⋯ . 

Simplifying y′  gives 
2 3 4 12 2 2 2

2! 3! 4! ( 1)!

n
x x x x

n
y

−

−
′ = + + + +⋯ ⋯  or 

3 4 12 2 2 2
3! 4! ( 1)!

n
x x x

n
y x

−

−
′ = + + + +⋯ ⋯ . By 

substituting the power series for y, we see that the right side of the differential equation is 
3 4 52 2 2 2 2 2

3! 4! 5! !

n
x x x x

n
x y x+ = + + + + + +⋯ ⋯ . Notice that this is identical to the power series version of 

the left side of the differential equation. This solution checks; the power series does solve the 

differential equation. 
 

 

Section 7 
 

1. The series is 4

1

1
n

n

∞

=

∑  which is a p-series with p = 4 > 1. The series converges by the p-series test. 



2. The series is 1

4
1

n

n

∞

=

∑ . This is a convergent geometric series, but the directions say to use either the p-

series test or integral test. Since the series is not a p-series, we're stuck with the integral test.  What a 

bother. 1

4
( ) 4x

x
f x

−= =  is positive, continuous, and decreasing for all x. 

( ) ( )1 1 1 1
ln 4 4ln 4 4ln 44 ln 41

1 1

4 lim 4 lim 4 lim b

b
b

x x x

b b b
dx dx

∞
− − −− −

→∞ →∞ →∞
= = ⋅ = + =∫ ∫ . Since this integral converges, the 

series converges by the integral test. 

3. The series is 
2

1
n

n

n

e

∞

=

∑ . Let 
2

( )
x

x
f x

e
= . This function is positive, continuous, and decreasing for all 

1x ≥ . 
2 2 2

2

11 1 1 1
2 2 2 2

1
1 1

lim lim lim

b
b

x x b

ex b b b

x
dx xe dx e e e

e

∞
− − − −− −

→∞ →∞ →∞
= = = + =∫ ∫ . Since this integral converges, the 

series converges by the integral test. 

4. Let 1
ln

( )
x x

f x = . For x ≥ 2, this function is positive, continuous, and decreasing. 

( ) ( ) ( )
2

2 2

lim limln ln limln ln ln ln 2
ln ln

b
b

b b b

dx dx
x b

x x x x

∞

→∞ →∞ →∞
= = = −∫ ∫ . This limit diverges, albeit very slowly. 

Since the improper integral diverges, the series diverges by the integral test. 

5. This series is a p-series with p = 1/5 ≤ 1. The series diverges by the p-series test. 

6. This series is a p-series with p = e > 1. The series converges by the p-series test. 

7. 3/2

1 1

n n n
= . This series is a p-series with p = 3/2 > 1. The series converges by the p-series test. 

8. Let 
( )

2

4
3 2

( ) x

x
f x

+
= . For x ≥ 1, this function is positive, continuous, and decreasing. 

( ) ( ) ( ) ( ) ( )
3 3 3

3 3 3

2 2

1 1 1 1
2434 4

3 3 9 2 9 2 9 1 2
1 1 1

lim lim lim
2 2

bb

b b bx b

x x
dx dx

x x

∞

− −

→∞ →∞ →∞+ + +
= = = + =

+ +
∫ ∫ . Since this integral 

converges, the series converges by the integral test. 

9. 
1/3

2/5 2/5 1/3 1/15

3 3 31 1
2 22

n

n n n
−= ⋅ = ⋅ . This is a p-series with p = 1/15 ≤ 1. The series diverges by the p-series test. 

10. Let 1
2 5

( )
x

f x
+

= . For x ≥ 0, this function is positive, continuous, and decreasing. 

( ) ( )1 1 1
2 2 20

0 0

lim lim ln 2 5 lim ln 2 5 ln 5
2 5 2 5

b
b

b b b

dx dx
x b

x x

∞

→∞ →∞ →∞
= = + = + −

+ +∫ ∫ . This limit does not exist, so the 

integral diverges. Since the integral diverges, the series diverges by the integral test. 

11. We will compare to 2

1

1
n

n

∞

=

∑  which is a convergent p-series (p = 2 > 1). 

( )
2 5 5

5 33 2 3

5

1

8 8

22 2

8

lim lim lim 1n n n

n nn n n n nn n n
n

+ +

++ +→∞ →∞ →∞
+

= = =  which is positive and finite. Therefore the given series 

converges by the limit comparison test. 

12. We will compare to 1

2
n

n

∞

=

∑  a divergent p-series (p = 1/2 ≤ 1). For all n ≥ 2, 1 1

1n n−
> . Therefore the 

given series diverges by the direct comparison test. 

13. We will compare to 1
ln

3
n

n

∞

=

∑  which diverges (see Example 4 – this is a useful series to compare against, 

so it is worth knowing that it diverges). For all n ≥ 3, ln(ln ) lnn n< . It follows that 1 1
ln(ln ) lnn n

> . The 

given series diverges by the direct comparison test. 



14. We will compare to ( )3 3
44

0 0

n

n

n

n n

∞ ∞

= =

=∑ ∑  which is a convergent geometric series ( 3
4

1r = < ). For all n, 

4 2 4
n n+ > , so 1 1

4 2 4n n+
< , and finally 3 3

4 2 4

n n

n n+
< . By the direct comparison test, the given series 

converges. 

15. We will compare to 2
!

0

n

n

n

∞

=

∑  which converges by the ratio test. ( )1 !2 2
( 1)! 12

lim lim 0 1
n

n

n

n n
n n

+

+ +
→∞ →∞

⋅ = = <  For all n, 

2 5 2n n− < , so 2 5 2
! !

n n

n n
− < . The given series converges by the direct comparison test. 

16. We will compare to ( )3 3
44

0 0

n

n

n

n n

∞ ∞

= =

=∑ ∑  which is still a convergent geometric series (see Problem 14). 

( )
3 2

3 2 4
4

3 43

4

lim lim 1

n
n n

n

n nn

n
n n

+
+ ⋅

⋅→∞ →∞
= = . This limit is finite and positive, so the given series converges by the limit 

comparison test. 

17. We will compare to 1

2
n

n

∞

=

∑  which is the harmonic series; it diverges. 
( )

4 4

4 33 3

4

1
1 1

1 1

1

lim lim lim 1n n n

n nn n nn n n
n

+ +

−− −→∞ →∞ →∞
+

= = = . 

This limit is positive and finite, so the given series diverges by the limit comparison test. 

18. We will compare to ( )1 1
44

0 0

n

n

n n

∞ ∞

= =

=∑ ∑  which is a convergent geometric series ( 1
4

1r = < ). 

( )1 4 4
12 4 4 2

lim lim 1
n n

n n
n nn n+ +→∞ →∞

⋅ = = . This limit is finite and positive, so the given series converges by the 

limit comparison test. 

19. Note that depending on the value of b, the terms of this series may be negative for some values of n. 

However, since a is positive, eventually an will be larger than b and ( )an b+  will be positive. It is 

important to point this out because the comparison tests only apply to series that are, ultimately, 

positive-term series. Let N be the threshold after which an + b is always positive. We will compare to 

1
n

n N

∞

=

∑ . ( )1 1 1
1

lim lim liman b an b

n an b n n
n n n

a+ +
+

→∞ →∞ →∞
÷ = ⋅ = = . This limit is positive and finite (because it is given that 

a is positive). Therefore the given series diverges by the limit comparison test. 

20. ( )1

2 1 2
3 33

0 0

n

n

n

n n

+

∞ ∞

= =

= ⋅∑ ∑ . This series is geometric with 2
3

1r = < . It converges by the geometric series test. 

21. 1
2

1
n

n

∞

=

∑ . This series diverges by Problem 19 (a = 2, b = 0) or by limit comparison to the harmonic 

series. 

22. 
1 3 3 31

1

3 3 3

3 ( 1) ( 1) ( 1)! 3 ! 1
( 1)! ( 1)! 13 3

lim lim lim lim 3 0 1
n n

n

n n
n

a n n nn n

a n n nn n nn n n n

+ +
+ ⋅ + + +

+ + +⋅→∞ →∞ →∞ →∞
= ⋅ = ⋅ ⋅ = ⋅ ⋅ = < . This series converges by the 

ratio test. 

23. This series is geometric with 2
7

1r = < . The series converges by the geometric series test. 

24. ( )
2 1 2 1

2 2

( 1) 2 ( 1) 2! ! 1
( 1)! ( 1)! 12 2

lim lim lim 2 0 1
n n

n n

n nn n

n n nn nn n n

+ ++ + + +

+ + ++ +→∞ →∞ →∞
⋅ = ⋅ = ⋅ = < . This series converges by the ratio test. 

25. We will compare to 1
n∑ , the divergent harmonic series. 

( )2

2

1/ cos(1/ )sin(1/ )

1/ 1/
lim lim

n nn

n nn n

− ⋅

−→∞ →∞
=  by l'Hospital's 

rule applied to the indeterminate form 0/0. Continuing, 
( )

( )
2

2

1/ cos(1/ )
1

1/
lim lim cos cos0 1

n n

nnn n

− ⋅

−→∞ →∞
= = = . This 

limit is finite and positive. Therefore the given series diverges by the limit comparison test. 

26. ( )1lim limcos cos0 1 0
n n

n n
a

→∞ →∞
= = = ≠ . This series diverges by the n

th
 term test. 



27. ( ) sin(1/ )1
1/

lim sin lim 1 0
n

n n
n n

n
→∞ →∞

= = ≠ . (For a justification of the limit computation, see Problem 25.) This 

series diverges by the n
th
 term test. 

28. ( )1lim cos
n

n
n

→∞
 does not exist; it has the form 1∞ ⋅ , which is not indeterminate. This series diverges by 

the n
th
 term test. 

29. We will compare to 2

1

n∑  which is a convergent p-series (p = 2 > 1). 2

(1/ ) sin(1/ ) sin(1/ )

1/1/
lim lim 1

n n n

nnn n

⋅

→∞ →∞
= = . 

(Again, for a justification of this limit, see Problem 25.) This limit is positive and finite, so the series 

converges. 

30. We will compare to 1
n∑  which is the divergent harmonic series. ( )(1/ ) cos(1/ ) 1

1/
lim limcos 1

n n

n n
n n

⋅

→∞ →∞
= = . This 

limit is positive and finite. Therefore the given series diverges by the limit comparison test. 

31. 
1 1

1 3 ( 1)! ( 1)! ( 1)! ( 1)!3 1
( 2)! ( 2)! ! 23 ! 3

lim lim lim lim3 ( 1) 3 1
n n

n

n n
n

a n n n n

a n n n nnn n n n
n

+ +
+ ⋅ + + + +

+ + +⋅→∞ →∞ →∞ →∞
= ⋅ = ⋅ ⋅ = ⋅ ⋅ + = > . This series diverges by the 

ratio test. Though perhaps it would have been easier to simplify the factorials before starting… 

32. ( )3 4 4

11 1

2 2

n

n n n
n n

∞ ∞
−

= =

− =∑ ∑ . Compare to the convergent p-series 3

1

n∑  (p = 3 > 1). 

( )
3 4

4 3 4 4

( 1)1 11lim lim lim 1
n nn n

n n n nn n n

−− −

→∞ →∞ →∞
÷ = = = . This limit is positive and finite. Therefore the given series 

converges by the limit comparison test. 

33. Let 2

1/1( )
x

x
f x e= ⋅ . For x ≥ 1, this is a positive, continuous, decreasing function. 

2 2

1/ 1/1 1

1 1

lim

b

x x

x xb
e dx e dx

∞

−

→∞
=∫ ∫  ( ) ( )1/ 1/ 1

1
lim lim 1

b
x b

b b
e e e e

→∞ →∞
= − = − + = − . Because this integral converges, 

the corresponding series converges by the integral test. 

 

There are, of course, many approaches to Problems 34-40. The candidates for geometric series, p-series, 
and ratio tests should be fairly obvious. Beyond those, students have a choice. The strategies below make 

up just one possible solution set. 

34. This series diverges by the integral test. 1
2 1

( )
x

f x
+

=  (which is positive, continuous, and decreasing) 

and 1
2 1

0

x
dx

∞

+∫  diverges. 

35. This series diverges by the n
th
 term test. lim 0

n
n

→∞
= ∞ ≠ . 

36. This series diverges by the p-series test. p = 1/2 ≤ 1. 

37. This series converges by the geometric series test. 3
4

1r = < . 

38. This series diverges by the ratio test. 1

1

( 1)! 3 1
! 33

lim lim lim 1
n

n

n
n

a n n

a n
n n n

+

+

+ +

→∞ →∞ →∞
= ⋅ = = ∞ > . 

39. This series converges by limit comparison to 2

1

n∑ . 
2

2

3
11

lim 3n

nn −→∞
⋅ = , which is positive and finite. 

40. This series diverges by direct comparison to 1
n∑ . 1n

e
n n

>  for n > 0. 

 

There are many approaches to Problems 41-49. See the comments before Problem 34. 

41. This series diverges by the p-series test. 2

1n

nn
=∑ ∑ ; p = 1 ≤ 1. 

42. This series diverges by limit comparison to 1
n∑ . 

2

2 214 4
lim lim 1n n n

n nn n− −→∞ →∞
⋅ = =  which is positive and finite. 



43. This series diverges by the integral test. Let 2 4
( ) x

x
f x

+
= , which is positive, continuous, and 

decreasing for x > 2. 2 4
3

x

x
dx

∞

+∫  diverges. 

44. This series is a convergent telescoping series. 2
2

2
n n

s
+

= − + . ( )2
2

lim lim 2 2
n n

n n
s

+
→∞ →∞

= − + = − . 

45. This series diverges by comparison to 1
lnn n∑  which diverges (see Problem 4). For n > 1, n n< . 

This implies that ln lnn n n n< , and therefore 1 1
lnln n nn n

> . 

46. This series converges by the geometric series test. 1
4

1r = < . 

47. This series converges by the ratio test. 
2 2

1 2 2

( 1) ( 1)3 1 1
3 33

lim lim 1
n

n

n n

n nn n
+

+ +

→∞ →∞
⋅ = = < . 

48. This series diverges by the n
th
 term test. ( )1 1lim 1 0

n

n e
n→∞

− = ≠ . 

49. This series converges by the root test. ( )3 3
2 1 2 1

lim lim 0 1
n

n
n n

n n
+ +

→∞ →∞
= = < . 

50.  
4

1

n∑ : This series is a divergent p-series (p = 1/4 ≤ 1). If we apply the ratio test, we obtain the 

following limit: 
4 4

4 4

1 4
1 11 1

lim lim lim 1n n n

nn nn n n
++ +→∞ →∞ →∞

⋅ = = = . 

 3

1

n∑ : This series is a convergent p-series (p = 3 > 1). If we apply the ratio test, we obtain the 

following limit: 
3 3

3 3

1
1( 1) ( 1)

lim lim 1n n

n nn n+ +→∞ →∞
⋅ = = . 

 The point here is that the ratio test really in inconclusive if the limit evaluates to 1. In this problem we 

see two examples where the limit is 1, and the respective series have different convergence behaviors. 

51. We will apply the integral test to 
( )

1

ln
p

n n
∑ . Let 1

(ln )
( ) p

x x
f x = . If p is positive (as we have assumed), 

then this function is positive, continuous, and decreasing for x ≥ 2. We need to examine the integral 

( )
1

ln
2

p
x x

dx

∞

∫ . If we let u = ln(x) so that 1
x

du dx= , then we have 
( )

1 1

ln
2 ln 2

p p
ux x

dx du

∞ ∞

=∫ ∫ . As we know, this 

integral converges iff p > 1. Therefore, the series converges iff p > 1 by the integral test. 

52. We already know (Problem 4) that this series diverges if p = 1. We will consider separately the cases 

where p > 1 and 0 < p < 1. 

p > 1: For all n ≥ 3, ln(n) > 1. This implies that ln( )p pn n n> , and finally 1 1

ln( )p p
n n n

< . If p > 1, then 

1
p

n∑  converges by the p-series test. Therefore 1

ln( )p
n n∑  converges by direct comparison. 

p < 1: If p < 1, then pn n>  for all n > 1. From this it follows that ln lnpn n n n> , and finally 
1 1
ln lnpn n n n

< . As we know, 1
lnn n∑  diverges. Therefore 1

lnp
n n∑  diverges by direct comparison if 1p < . 

Putting it all together, we see that 1

lnp
n n∑  converges if p > 1 and diverges if 0 < p ≤ 1. 

53. For all n ≥ 3, ln(n) > 1. This implies that ln 1
p p

n

n n
>  for n ≥ 3. If p ≤ 1, then 1

p
n∑  diverges. Therefore, 

by direct comparison, ln
p

n

n∑  diverges for p ≤ 1. 

It will take a little more work to show that the series converges when p > 1. We will use the integral 

test. Let ln( ) p

x

x
f x = . If p > 1, this function is positive, continuous, and decreasing for n ≥ 2. We need 

to integrate ln

2

p

x

x
dx

∞

∫ . We will do so by parts, letting u = ln(x) and pdv x dx−= . This gives 1
x

du dx=  

and 1

1 11 1 1 1
1 1 1 p

p p

p p p x
v x x −

− + −

− + − −
= = = ⋅ . 



1 1 1

2 2 22 2

ln 1 1 1 1 1 ln 1 1
lim ln lim

1 1 (1 ) 1

b b

p p p p pb b

x x
dx x dx dx

x p x x p x p x p x

∞ ∞ ∞

− − −→∞ →∞

   
= ⋅ ⋅ − ⋅ ⋅ = −   

− − − −   
∫ ∫ ∫  

We know from our study of improper integrals that the integral at the end of this expression will 
converge if p > 1. All we really need to determine is whether the limit in the above expression is 

finite as well. Partially evaluating that limit gives the following:  

1 1 1

2

ln 1 ln 1 ln 2
lim lim

(1 ) 1 1 2

b

p p pb b

x x

p x p x p− − −→∞ →∞

 
= ⋅ − ⋅ 

− − − 
. 

Again, all that really matters is whether this is finite as b → ∞ . Indeed, since p > 1, 1

lnlim p

x

xb
−

→∞
 is finite. 

If you don't believe me, begin by using l'Hospital's rule: 

1 2 1

ln 1 / 1
lim lim lim 0

( 1) ( 1)
p p pb b b

x x

x p x p x
− − −→∞ →∞ →∞

= = =
− − ⋅

. 

Tracking backwards, we see that the original improper integral converges. Therefore, by the integral 

test, the series converges for p > 1. 

54. To analyze the convergence of 1

1
np

n

∞

=

∑ , we will compare to 1
ln

2
n n

n

∞

=

∑  which we know (from Problem 4) 

diverges. ( )1 1
ln ln

lim lim 1n

n

p

n n p n n
n n→∞ →∞

÷ = =  (by the Prime Number Theorem). This limit is positive and 

finite, so the series 1

np∑  diverges by the limit comparison test. 

55. We apply the ratio test. 1

1 1

1 1
1

lim lim lim 0.618 1n n n

n n n

a f f

a f f
n n n

φ
+

+ +→∞ →∞ →∞
= ⋅ = = ≈ < . The series 1

nf∑  converges by 

the ratio test. 

56. Let d1 be the degree of p1(x) and let d2 be the degree of p2(x). Then 1

2

( )

( )

p n

p n

n N

∞

=

∑  converges as long as 

2 1 2d d≥ + . In general, one would use limit comparison against 1
d

n∑ , where d is the difference 

between d2 and d1. Such a comparison will always produce a finite, positive limit (either the ratio of 
leading coefficients of the polynomials or the reciprocal of that number, depending on how the limit 

is set up). 1
d

n∑  is a p-series; it converges only if d is at least two. (Note that the difference between 

the degrees of two polynomials cannot be between 1 and 2 since polynomials have integer degrees.) 

Therefore we must have 2 1 2d d− ≥  for convergence of 1

2

( )

( )

p n

p n

n N

∞

=

∑ . 

57. Answers will vary. For example, if 2n

n
a =  and 3n

n
b = , then Σan and Σbn both diverge (geometric 

with |r| > 1), but Σan/bn converges (|r| = 2/3 < 1). 

58. Answers will vary. For example 1

2nn
a =  and 1

3nn
b =  so that ( )3

2
n

n

na

b
= . 

59. Answers will vary. For example, 2

1
n n

a =  and 1
n n

b =  so that 
2

2

1/ 1
1/

n

n

a n n
b n nn

= = = . 

60. Answers will vary. For example, 1
n n

a =  and 1
n n

b =  so that 1/ 1

1/

n

n

a nn

b nn n
= = =  

61. It cannot be done. If Σbn converges and lim 0n

n

a

b
n→∞

= , then Σan must converge as well. This is a 

strengthening of the limit comparison test. 

62. For most combinations of convergence and divergence behavior, it is possible to come up with series 

Σan and Σbn such that n

n

a

b
→ ∞ . 

Both Σan and Σbn converge: 2

1
n n

a = , 3

1
n n

b = , n

n

a

b
n= → ∞  



Both Σan and Σbn diverge: 1
n n

a = , 1
n n

b = , n

n

a

b
n= → ∞  

Σan diverges and Σbn converges: 1
n n

a = , 2

1
n n

b = , n

n

a

b
n= → ∞  

However, one cannot come up with an example in which Σan converges, Σbn diverges, and n

n

a

b
→ ∞ . If 

n

n

a

b
→ ∞  and Σbn diverges, then Σan must diverge as well. 

63. We will use limit comparison, comparing to the harmonic series. 
1/

lim limna

nn
n n

na L
→∞ →∞

= = . Since this limit 

is finite and positive, Σan must diverge by the limit comparison test. 

64. No. Suppose 1
n n

a = . Then 2

1na

n n
=∑ ∑  which converges. However, 1

n n
a =∑ ∑  still diverges. 

 
 

Section 8 
 

1. The series is 
1

3

( 1)

1

n

n
n

+
∞

−

=

∑ . We will skip over checking for convergence and go straight to absolute 

convergence. 3

1

1 1

n n
n n

a
∞ ∞

= =

=∑ ∑ . This is a convergent p-series (p = 3 > 1), so the absolute value series 

converges. Therefore the given series converges absolutely. 

2. The series is 2

( 1)1

1

( 1)
nn

n
n

∞
++

=

− ⋅∑ . This series is alternating, with 2

( 1)n

n n
a

+= . 2 2

2 1

( 1)

n n

n n

+ +

+
<  for n ≥ 1, and 

2

1lim 0n

nn

+

→∞
= . Therefore the series converges by the AST. 

We now turn to the absolute value series 2 2

( 1) ( 1)1

1 1

( 1)
n nn

n n
n n

∞ ∞
+ ++

= =

− ⋅ =∑ ∑ . By limit comparison to the 

harmonic series, this series diverges. (
2

2

( 1)/ ( 1)

1/
lim lim 1

n n n n

n nn n

+ +

→∞ →∞
= =  which is positive and finite.) 

Therefore the given series converges conditionally. 

3. Consider the absolute value series ( ) ( )1 1
2 2

0 0

3 3
n n

n n

∞ ∞
−

= =

⋅ = ⋅∑ ∑ . This is a convergent geometric series 

( 1
2

1r = < ). Therefore the given series converges absolutely. 

4. This is an alternating series with 
1

n

n n
a

+
= . 

1
lim 0n

n
n

+
→∞

=  and 1

2 1

n n

n n

+
+ +

<  for all n ≥ 1. The series 

converges by the AST. 

The absolute value series is 
1 1

1 1

( 1)
n n n

n n

n n

∞ ∞

+ +
= =

− ⋅ =∑ ∑ . This series diverges by comparison to the 

divergent p-series 1

n∑  (p = 1/2 ≤ 1). ( 1/ 1

/( 1)
lim lim 1n n

nn nn n

+

+→∞ →∞
= = , which is positive and finite.) 

Therefore the given series is conditionally convergent. 

5. 2 1
3 4

lim lim( 1)n n
n n

n n
a +

−
→∞ →∞

= − ⋅  does not exist and therefore is not zero. This series is divergent, as proven by 

the n
th
 term test. 

6. The absolute value series is 
( 2) 2

! !
0 0

n n

n n

n n

∞ ∞
−

= =

=∑ ∑ .This series converges by the ratio test: 

1 !2 2
( 1)! 12

lim lim 0 1
n

n

n
n n

n n

+

+ +
→∞ →∞

⋅ = = < . Therefore the given series converges absolutely. 

7. This is a convergent p-series (p = 4 > 1). Since it is a positive-term series, its convergence is 
automatically absolute convergence. 



8. This is a geometric series with 1.2 1r = > . The series diverges by the geometric series test. 

9. 
1 1

1 3 1 ! 3 1 !
( 1)! ( 1)!3 1 3 1

lim lim lim 0 1
n n

n

n n
n

a n n

a n n
n n n

+ +
+ + +

+ ++ +→∞ →∞ →∞
= ⋅ = ⋅ = < . This positive-term series converges by the ratio test. 

The convergence is absolute because the series is positive-term. 

10. This series is alternating with 1
2 1n n

a
+

= . 1
2 1

lim 0
n

n
+

→∞
=  and 1 1 1

2( 1) 1 2 3 2 1n n n+ + + +
= <  for all n ≥ 0. The series 

converges by the AST. 

The absolute value series is 
cos( ) 1

2 1 2 1
0 0

n

n n

n n

π
∞ ∞

+ +
= =

=∑ ∑ . This series diverges (see Problem 19 of Section 7). 

Therefore the given series converges conditionally. 

11. Because of the dominance of the factorial over the exponential, 
( 1) !

10
lim

n

n

n

n

− ⋅

→∞
 does not exist. The series 

diverges. 

12. This series is not strictly alternating. However, consider the absolute value series. 
( 1)/2

2 2

( 1) 1

1 1

n n

n n
n n

+
∞ ∞

−

= =

=∑ ∑ . 

This is a convergent p-series (p = 2 > 1). Therefore the given series converges absolutely. 

13. Because the cosine function is bounded by 1, 2 – cos(n) is always positive. This is a positive term 

series. We will compare it to 2

4

n∑  which is a convergent p-series (p = 2 > 1). 2 2

2 cos 4n

n n

− < , so the given 

series converges by direct comparison. Since it is a positive-term series, the convergence is absolute. 

14. This series does not strictly alternate, but consider the absolute value series: 
sinsin

3 3
1 1

n n

nn

n n

∞ ∞

= =

=∑ ∑ . This is 

a positive term series and can be compared to the convergent geometric series 1

3n∑  ( 1
3

1r = < ). 

Since sin 1n ≤ , 
sin 1

3 3n n

n
≤ . The absolute value series converges by direct comparison, and so the 

original series converges absolutely. 

15. The absolute value series is 2 2

( 3) 3

! !
0 0

n n

n n n n
n n

∞ ∞
−

+ +
= =

=∑ ∑ . 
1 2

1

2

3 !

( 1)! ( 1) 3
lim lim

n
n

n
n

a n n

a n nn n

+
+ +

+ + +→∞ →∞
= ⋅  

( )2

2

!

( 1)! ( 1)
lim 3 0 1n n

n nn

+

+ + +→∞
= ⋅ = < . The series converges by the ratio test. Therefore the original series 

converges absolutely. 

16. 
1

10
( 1)

10 2
1

0.4054346
n

n
n

n

s
+−

⋅
=

= =∑ . 11 0.0000444a = ; this is maximum possible error in the approximation. 

17. 3

15

15 1
1

( 1) 0.3491
n n

n
n

s
+

=

= − ⋅ = −∑ . The maximum possible error in this approximation is 16 0.00391a = . 

18. 
2

1

20

20 ( 3)
1

0.03125n

n

n

s +−
=

= =∑ . The maximum possible error in this approximation is 
8

21 1.405 10a
−= × . 

19. We require that 1 0.05
n

a + < . 1
1

0.05 20 1 19
n

n n
+

< ⇒ < + ⇒ > . As long as we use at least 20 terms, 

we will have the desired accuracy. 

20. We require that 1 0.05
n

a + < . 3

1

( 1) 10
0.05 4n

n
n+

+ +
< ⇒ ≥ . As long as we use at least 4 terms, we will have 

the desired accuracy. 

21. We require that 1 0.0005
n

a + < . 3

31

( 1)
0.0005 ( 1) 2000 ( 1) 12 11

n
n n n

+
< ⇒ + > ⇒ + > ⇒ > . As long as 

we use at least 12 terms, we will have the desired accuracy. 

22. We require that 1 0.00005
n

a + < . The cos(nπ) factor accounts for the alternation of the series; we only 

need to consider the 1/(n
2
 – 1). 

( )
2

2 21

1 1
0.00005 ( 1) 1 20000 ( 1) 200001

n
n n

+ −
< ⇒ + − > ⇒ + >  



1 141n⇒ + > . So we must take n to be at least 141. However, the question is about how many terms 

are needed, and the index variable begins with n = 2, not n = 1. Therefore, the answer to the question 

being asked is that we should use at least 140 terms. 

23. 
1

10
( 1)

10

1

0.450725
n

n
n

s
−−

=

= =∑ . 1
11 11

0.3015a = = . Therefore bounds for the actual value of the series are 

given by 
1( 1)

1

0.451 0.302 0.451 0.302
n

n
n

−
∞

−

=

− ≤ ≤ +∑  or 
1( 1)

1

0.149 0.752
n

n
n

−
∞

−

=

≤ ≤∑ . 

24. 
5

cos( )

5 (2 )!
0

0.540302303792
n

n

n

s
π

=

= =∑ . 
91

6 12!
2.088 10a

−= = × . Therefore bounds for the actual value of the 

series are given by 
( )cos9 9

(2 )!
0

0.540302303792 2.088 10 0.540302303792 2.088 10
n

n

n

π
∞

− −

=

− × ≤ ≤ + ×∑  or 

( )cos

(2 )!
0

0.5403023017 0.5403023059
n

n

n

π
∞

=

≤ ≤∑ . 

25. Absolutely convergent series "converge faster" because their terms are vanishing to zero much more 
quickly. Therefore the various decimal places of the partial sums stabilize earlier. 

26. The actual value of an alternating series whose terms decrease monotonically in size must be between 

any two consecutive partial sums. Thus, if s represents the value of the series, then we have 

100 101s s s< <  and 101 102s s s< < . The latter bounds are tighter (as they must be since the error is 

always given by the next term), so we have 3.61 3.58s< < . 

27. The actual value of an alternating series whose terms decrease monotonically in size must be between 

any two consecutive partial sums. Thus, if s represents the value of the series, then we have 

40 41s s s< <  and 41 42s s s< < . The latter bounds are tighter, so we have 11.956 12.089s< < . 

28. 2 4 61 1 1
2 24 720

cos( ) 1x x x x≈ − + −  so a fourth-order approximation of cos(-1) is given by 

2 4 131 1 1 1
2 24 2 24 24

cos( 1) 1 ( 1) ( 1) 1− ≈ − − + − = − + = . The maximum error is given by the first omitted term, 

in this case 
61 1

720 720
( 1)− = . 

29. 3 5 7 91 1 1 1
6 120 5040 362880

sin x x x x x x≈ − + + − . An approximation of sin(5) is therefore given by 

( 1)3 5 7 2 11 1 1
6 120 5040 (2 1)!

sin(5) 5 (5) (5) (5) (5)
n

n

n

− +

+
≈ − + − + +⋯ . If we want error less than 10

-6
, then we need 

the first omitted term, 
1( 1) 2 3

(2 3)!
(5)

n
n

n

+− +

+
 to be less than 10

-6
 in absolute value. Scanning a table of values, 

we see that 
2 3 65

(2 3)!
10

n

n

+ −

+
<  when n = 10. Thus, we need a polynomial of degree 2 10 1 21⋅ + = . 

For sin(0.5), we repeat the above analysis, but with 0.5 substituted for 5. 
2 3(0.5) 6

(2 3)!
10

n

n

+
−

+
<  when n is 3. 

We need a polynomial of degree 2 3 1 7⋅ + = . 

Finally, when we scan a table to see when 
2 3(0.01) 6

(2 3)!
10

n

n

+
−

+
< , we have n = 0. This means we need a 

polynomial of only degree 2 0 1 1⋅ + = . A first-degree (i.e., linear) polynomial is sufficient to 

approximate sin(0.01) with the desired accuracy. 

30. a. 
2 2 3 4 51 1 1 1

5 2! 3! 4! 5!
( 2) 1 ( 2) ( 2) ( 2) ( 2) ( 2)e P

− ≈ − = + − + − + − + − + −  

 
2 3 4 52 2 2 2 1

2! 3! 4! 5 155 !
( 2) 1 2P≈ − = − + − + − =  

 b. The error is no more than the absolute value of the first omitted term: 
62 4

6! 45
=  

 c. The Lagrange error bound is given by 
6

5 6!
( 2) 2 0MR − ≤ ⋅ − − . The maximum value of the sixth 

derivative of ( ) xf x e=  on the interval [ 2,0]−  is 0 1e = , so we can take M = 1. This gives an error 

bound of 
61 4

6! 45
(2) = . 



 d. While both methods give the same error bound in this case, the alternating series error bound is a 

little simpler to apply since we do not have to worry about an M-value. 
 e. We cannot repeat the comparison of errors for x =  2. When we plug in 2 for x, we do not get an 

alternating series. In this case we can only use the Lagrange error bound. 
31. a. To approximate ln(1.3), we let x = 0.3 in the polynomial for ( ) ln(1 )f x x= + . This gives 

2 3 4 51 1 1 1
5 2 3 4 5
(0.3) 0.3 (0.3) (0.3) (0.3) (0.3) 0.262461P = − + − + = . 

 b. The first omitted term from this approximation is 
61

6
(0.3) 0.0001215= . Therefore we have 

0.262461 0.00012 ln(1.3) 0.262461 0.00012− ≤ ≤ +  or 0.26234 ln(1.3) 0.26258≤ ≤ . 

 c. 
6

5 6!
(0.3) (0.3 0)MR ≤ − . For M we need a bound for the value of (6) ( )f x  on [0,0.3] . 

6

(6) 120

(1 )
( )

x
f x −

+
=  which takes on its maximum value in this interval at x = 0. 

(6)
(0) 120f = , so we 

use this value for M. 
6120

5 6!
(0.3) (0.3) 0.0001215R ≤ = . The work involved in coming up with a 

value for M makes the alternating series bound much more convenient. 

32. a. 
2 40.4 0.4

2! 4!
cos(0.4) 1 0.92106666≈ − + = … . 

 b. The maximum error is the first omitted term: 
6 60.4

6!
5.6889 10−= ×  

 c. 
5

4 5!
(0.4) (0.4)MR ≤ ⋅ . As usual for sine and cosine functions, we will take M = 1. Then 

50.4
4 5!
(0.4) 0.000085333R ≤ = … . The alternating series error bound is a little tighter and a little 

easier to generate. 

33. a. 1 2
3 3 3

arctan(1) (1) 1P≈ = − = . Hence 82
3 3

4 arctan(1) 4 2.6666⋅ = ⋅ = = … . (I hope it goes without 

saying that this is a pretty wretched approximation for π.) 
 b. The maximum error in the approximation of arctan(1) is the first omitted term: 1/5. However, this 

means only that 2 1 2 1
3 5 3 5

arctan(1)− ≤ ≤ + . When we multiply by four, everything, including the 

error term, is scaled up by a factor of four. Therefore, the maximum possible error in our 

approximation for 4 arctan(1)π = ⋅  is 4/5. 

 c. Accuracy to two decimal places normally means error less than 0.005. However, because of the 

factor of four, we actually have to have error less than 0.005
4

0.00125= . 1 1
1 2( 1) 1 2 3n n n

a + + + +
= = . We 

need 1
2 3

0.00125 2 3 800 2 797 398
n

n n n
+

< ⇒ + > ⇒ > ⇒ > . As long as we use an n-value of 399 

or above, we will have the desired accuracy. Remember, though, that the initial term corresponds 
to n = 0. So the number of terms corresponding to n = 399 is 400. We need 400 terms to obtain 

the desired accuracy. 

34. Answers will vary. One example: let 2

1
n n

a = . 

35. Answers will vary. One example: let 
n

a n= . 

36. This is impossible. If the series is a positive-term series (as indicated), then any convergence is 

automatically absolute convergence. There is no such thing as a positive-term series that converges 

conditionally. 

37. Answers will vary. One example: let 
( 1)n

n n
a

−= . 
n

a∑  converges conditionally by the AST, but 

2 1
n n

a =∑ ∑  which diverges. 

38. Answers will vary. One trivial example: let 1
n n

a =  and 1
n n

b −= . 

39. False. Suppose 1
n n

a = . Then 2

2 1
n n

a =∑ ∑  converges as desired. However 1
n∑  diverges. 

40. False. Suppose 
( 1)n

n n
a

−= . Then 
1( 1)n

n n
a

+−− =  and 1
n n

a = . 
n

a∑  and 
n

a−∑  both converge by the 

AST. However, 
n

a∑  is a divergent p-series. 



41. False. Let 1
n n

a = . Then 2

1na

n n
=∑ ∑  which converges. However, 1

n n
a =∑ ∑  diverges. 

42. True. This is Theorem 8.3. 

43. False. This is true only for absolutely convergent series. A counter-example is 
( 1)n

n n
a

−= . 

44. True. One way to assess the convergence of ( 1)
n

n
a−∑  is to look at the corresponding absolute value 

series: ( 1)
n

n na a− =∑ ∑ . We know this latter series converges because it is given that 
n

a∑  

converges absolutely. Therefore the series ( 1)
n

n
a−∑  must converge absolutely as well. 

45. 
1 2 2

1

2 2

( 1)

( 1) ( 1) ( 1)
lim lim lim ( 1) 1

n
n

n
n

a x n n

a n x nn n n
x x

+
+ +

+ + +→∞ →∞ →∞
= ⋅ = ⋅ + = + . We require that 1 1x + < . 

1 1 1 1 1 2 0x x x+ < ⇒ − < + < ⇒ − < < . We now check endpoints. 

x = -2: 2 2

( 2 1) ( 1)

1 1

n n

n n
n n

∞ ∞
− + −

= =

=∑ ∑ . This series converges (absolutely). The corresponding absolute value 

series is a convergent p-series (p = 2 > 1). 

x = 0: 2 2

(0 1) 1

1 1

n

n n
n n

∞ ∞
+

= =

=∑ ∑ . This is a convergent p-series (p = 2 > 1). 

Radius of convergence: 1  Interval of convergence: -2 ≤ x ≤ 0 

46. 
( )

( )

2 1
2

1

22

( 1) 3 (2 )! ( 1) 3 (2 )! 1
(2 2)! (2 2)! (2 2)(2 1)33

lim lim lim lim 0
n

n

n
n

n xa n n n

n n n na nn xn n n n
x x

+

+
+ + + +

+ + + +++→∞ →∞ →∞ →∞
= ⋅ = ⋅ ⋅ = ⋅ = . This limit is less than 1, 

so the series converges for all real numbers. 

Radius of convergence: ∞  Interval of convergence: -∞ < x < ∞ 

47. 
1

1 (3 ) 2 1 2 1
2 3 2 3(3 )

lim lim lim 3 3
n

n

n
n

a x n n

n na xn n n
x x

+
+ + +

+ +
→∞ →∞ →∞

= ⋅ = ⋅ =  

1 1
3 3

3 1 1 3 1x x x−< ⇒ − < < ⇒ < <  

1
3

x = : 
( )1

3
3

1
2 1 2 1

0 0

n

n n

n n

∞ ∞
⋅

+ +
= =

=∑ ∑ . This series diverges. (See Section 7, Problem 19.) 

1
3

x −= : 
( )1

3
3 ( 1)

2 1 2 1
0 0

n
n

n n

n n

−∞ ∞
⋅ −

+ +
= =

=∑ ∑ . This series is alternating with 1
2 1n n

a
+

= . 1
2 1

lim lim 0n n
n n

a
+

→∞ →∞
= =  and 

1 1 1
2( 1) 1 2 3 2 1n n n+ + + +

= <  for all n ≥ 0. Therefore the series converges by the AST. 

Radius of convergence: 1/3  Interval of convergence: -1/3 ≤ x < 1/3 

48. 
1 2 2

1

2 2

( 1)! ( 6) ( 1)!5 5
!( 1) 5 ! ( 6) ( 1) 5

lim lim lim ( 6) lim ( 1) ( 6)
n

n

n
n

a n x nn n

na n n x nn n n n
x n x

+
+ + ⋅ − ++ +

+ + ⋅ − + +→∞ →∞ →∞ →∞
= ⋅ = ⋅ ⋅ − = + ⋅ − = ∞ . This series 

diverges for all x except x = 6 (the center of the series). 

Radius of convergence: 0  "Interval" of convergence: Converges only at x = 6 

49. This series is geometric with 
3
xr = . It converges iff 

3
1x < . 

3 3
1 1 3 3 3

xx x x< ⇒ < ⇒ < ⇒ − < < . 

Radius of convergence: 3  Interval of convergence: -3 < x < 3. 

50. 
1

1

1 1

3 3
1 3( 1) 3 3

lim lim lim
n n n

n

n n n
n

a xx n n

na n xn n n
x

+
+

+ +

⋅
++ ⋅→∞ →∞ →∞

= ⋅ = ⋅ ⋅ = . 

3
1 3 3 3

x
x x< ⇒ < ⇒ − < <  

x = 3: 3 1

3
1 1

n

n nn
n n

∞ ∞

⋅
= =

=∑ ∑ . This is the harmonic series. It diverges. 

x = -3: 
( 3) ( 1) 3 ( 1)

3 3
1 1 1

n n n n

n n nn n
n n n

∞ ∞ ∞
− − ⋅ −

⋅ ⋅
= = =

= =∑ ∑ ∑ . This is the (opposite of the) alternating harmonic series. It 

converges. 
Radius of convergence: 3  Interval of convergence: -3 ≤ x < 3. 



51. 
1 2 2

1

2 1 2 1

3 3
3( 1) 3 ( 1) 3

lim lim lim
n n n

n

n n n
n

a xx n n

a n x nn n n
x

+
+

+ +

⋅

+ ⋅ +→∞ →∞ →∞
= ⋅ = ⋅ ⋅ =  

3
1 3 3 3

x
x x< ⇒ < ⇒ − < <  

x = 3: 2 2

3 1

3
1 1

n

n
n n

n n

∞ ∞

⋅
= =

=∑ ∑ . This is a convergent p-series (p = 2 > 1). 

x = -3: 2 2 2

( 3) ( 1) 3 ( 1)

3 3
1 1 1

n n n n

n n
n n n

n n n

∞ ∞ ∞
− − ⋅ −

⋅ ⋅
= = =

= =∑ ∑ ∑ . The absolute-value version of this series is the one that was just 

considered. Since that series converges, this one converges absolutely. 
Radius of convergence: 3  Interval of convergence: -3 ≤ x ≤ 3. 

52. 
1 2 2

1

1 2 1 2

( 1)! ( 1)!3 3 1
! 33 ( 1) ! 3 ( 1)

lim lim lim lim ( 1)
n n n

n

n n n
n

a n x nn n

na n n x nn n n n
x n x

+
+

+ +

+ ⋅ ++ +

+ + ⋅ + +→∞ →∞ →∞ →∞
= ⋅ = ⋅ ⋅ = ⋅ + ⋅ = ∞ . This series converges only 

at its center. 

Radius of convergence: 0  "Interval" of convergence: Converges only at x = 0 

53. ( )
1

1

1 1

( 4) 1
1 1( 1) ( 4) ( 1) ( 1) ( 1)

lim lim lim ( 4) lim ( 4) lim ( 4)
n n n n

n

n n n n
n

na x n n n n

n na n x n n nn n n n n
x x x

+
+

+ +

−

+ ++ − + + ⋅ +→∞ →∞ →∞ →∞ →∞
= ⋅ = ⋅ − = ⋅ − = ⋅ ⋅ − . The 

difficulty in evaluating this limit is in the middle factor. Observe that ( )1

n
n

n+
 is the reciprocal of 

( )1 n
n

n

+ . The latter expression turns out to be easier to evaluate. ( ) ( )1 11
n n

n

n n

+ = +  which tends to e as 

n → ∞ . Therefore ( ) 1
1

n
n

n e+
→  as n → ∞ . Returning to the ratio test… 

( )1 41 1
1 1 1

lim lim ( 4) lim 0n

n

na xn

n n n ean n n
x+ −

+ + +
→∞ →∞ →∞

= ⋅ ⋅ − = ⋅ = . Since the limit is less than 1 independent of the 

value of x, this series converges for all x. 

Radius of convergence: ∞  Interval of convergence: -∞ < x < ∞ 

54. This series is geometric with 1
5

xr += . It converges iff 1
5

1x+ < . 

1
5

1 1 5 5 1 5 6 4x x x x+ < ⇒ + < ⇒ − < + < ⇒ − < <  

Radius of convergence: 5  Interval of convergence: -6 < x < 4 

55. 
2 2 2 2 2

1

2 2

! !
( 1)! ( 1)! 1

lim lim lim lim 0
n n

n

n n
n

a x n n x x

n n na x xn n n n

+ +
+

+ + +
→∞ →∞ →∞ →∞

= ⋅ = ⋅ = = .  Since the limit is less than 1 independent of the 

value of x, this series converges for all x. 

Radius of convergence: ∞  Interval of convergence: -∞ < x < ∞ 

56. 
2 2 2 2

1

2 2 2

( 2) 2 22 2

( 1) 2( 1) ( 2) ( 1) 2( 1)
lim lim lim ( 2) ( 2)

n
n

n
n

a x n n n n

a n n x n nn n n
x x

+
+ + + +

+ + + + + + +→∞ →∞ →∞
= ⋅ = ⋅ + = +  

2
( 2) 1 2 1 1 2 1 3 1x x x x+ < ⇒ + < ⇒ − < + < ⇒ − < < −  

x = -1: 
2

2 2

( 1 2) 1

2 2
1 1

n

n n n n
n n

∞ ∞
− +

+ +
= =

=∑ ∑ . This series converges by comparison to the convergent p-series 2

1

n∑  

( 2 1p = > ), as shown here: 
( )

2 2

22

1/ 2

1/ 2
lim lim 1n n n

nn nn n

+

+→∞ →∞
= = , which is positive and finite. 

x = -3: 
( )

2 2

2 2 2

3 2 ( 1) 1

2 2 2
1 1 1

n n

n n n n n n
n n n

∞ ∞ ∞
− + −

+ + +
= = =

= =∑ ∑ ∑ . This series still converges. 

Radius of convergence: 1  Interval of convergence -3 ≤ x ≤ -1 

57. 
1

1 1 ( 3) 11 1
2 2( 3)

lim lim lim ( 3) 3
n

n

n
n

a n x nn n

n na nn xn n n
x x

+
+ + ⋅ + ++ +

+ +⋅ +→∞ →∞ →∞
= ⋅ = ⋅ ⋅ + = +  

3 1 1 3 1 4 2x x x+ < ⇒ − < + < ⇒ − < < −  



x = -2: 
1 1 1

1 1 1

( 2 3) 1
n nn n n

n n n

n n n

∞ ∞ ∞

+ + +
= = =

− + = ⋅ =∑ ∑ ∑ . This series diverges by comparison to the divergent p-

series 1

n∑  (p = 1/2 ≤ 1): 1/ 1 1

/( 1)
lim lim lim 1n n n

nn n n nn n n

+ +

+ ⋅→∞ →∞ →∞
= = = , which is positive and finite. 

x = -4: 
1 1

1 1

( 4 3) ( 1)
n nn n

n n

n n

∞ ∞

+ +
= =

− + = ⋅ −∑ ∑ . This series is alternating with 
1

n

n n
a

+
= . 

1
lim lim 0n

n n
n n

a
+

→∞ →∞
= =  and 

1

( 1 1 1

n n

n n

+
+ + +

<  for all n ≥ 1. Therefore this series converges by the AST. 

Radius of convergence: 1  Interval of convergence: -4 ≤ x < -2 

58. 
1 1 1

1

1 1

3 32 1 2 1 1
22 1 3 3 2 1

lim lim lim 3
n n nn n

n

n n n n n
n

a x

a xn n n
x x

+ + +
+

+ +

⋅ − −

− ⋅ −→∞ →∞ →∞
= ⋅ = ⋅ ⋅ = ⋅ ⋅  

3 3 2 2
2 2 3 3

1 1 1x x x−< ⇒ − < ⋅ < ⇒ < <  

2
3

:x =  ( )3 62
32 1 6 3

1 1

n n

n n n

n

n n

∞ ∞

− −
= =

⋅ =∑ ∑ . 6

6 3
lim 1 0

n

n n
n −→∞

= ≠ . This series diverges by the n
th
 term test. 

2
3

:x −=  ( )3 2
32 1

1

n

n

n

n

∞
−

−
=

⋅∑ . This is the same series as the preceding one, except that it alternates. 

Alternation will not help it pass the n
th
 term test. This series diverges as well. 

Radius of convergence: 2/3  Interval of convergence 2 2
3 3

x− < <  

59. We cannot use the ratio test in this example. The limit will not exist due to the oscillation of the sine 
function. This series is also not geometric. Our strategy will be the same as in Example 6 in which we 

bounded the value of the trigonometric function in order to use comparison. 

2 2 2 2

sin( )sin( ) 1sin( ) 1
n nn x xn

n n n n
n

⋅
≤ ⇒ ≤ ⇒ ≤ . Therefore, if we can determine where 2

nx

n∑  converges, it will 

follow that 2

sin( ) nn x

n

⋅

∑  will converge for the same x-values. It will then follow that the given series 

converges absolutely for those x-values. 

2

1

n
x

n
n

∞

=

∑ : 
1 2 2

1

2 2( 1) ( 1)
lim lim lim

n
n

n
n

a x n n

a n x nn n n
x x

+
+

+ +→∞ →∞ →∞
= ⋅ = ⋅ = . 1 1 1x x< ⇒ − < < . 

1x = ± : 2 2

( 1)
1

1 1

n

n n
n n

∞ ∞
±

= =

=∑ ∑ . Both endpoints generate the same convergent p-series (p = 2 > 1). 

Therefore this "helper series" converges for -1 ≤ x ≤ 1. 

By the direct comparison test, it follows that 2

sin( )

1

n
n x

n
n

∞
⋅

=

∑  converges for -1 ≤ x ≤ 1. Finally, we 

conclude that the given series 2

sin( )

1

n n

n
n

x
∞

=

⋅∑  converges absolutely on this interval. 

Note that if 1x > , the factor nx  will dominate the 2n  in the denominator. So we will have 

divergence outside this interval. 

Radius of convergence: 1  Interval of convergence: -1 ≤ x ≤ 1 

60. Answers will vary. For example: !
n

n x∑ . 

61. Answers will vary. For example: 
!

n
x
n∑ . 

62. Answers will vary, but geometric power series are good examples: 
n

x∑ . 

63. Answers will vary. For example: 2

n
x

n∑ . 

64. Answers will vary. For example: 
2

1

n

n

x

n
n

∞
−

⋅
=

∑ . 



65. a. This series is geometric with r x= . It converges iff 1x < , i.e. on 1 1x− < < . 

 b. 
1

1 0

( ) ( 1)
n n

n n

f x n x n x
∞ ∞

−

= =

′ = ⋅ = + ⋅∑ ∑ . This result is obtained simply by differentiating the general 

term of the series. In the first summation, the index begins at n = 1 instead of n = 0 only because 

the general term of ( )f x′  is 0 when n = 0; for this reason we have left it out of the series. The 

second summation is just a re-indexing of the first. 
  Differentiating a power series does not change its radius of convergence. The only possible 

change to the interval of convergence is the loss of endpoints, but the series for ( )f x  did not 

converge at its endpoints to begin with. 

  Interval of convergence: 1 1x− < < . 

 c. ( ) ( )2 3 2 3 4 2 31 1 1 1 1 1
2 3 4 2 3

0
10

1
n

x
x

n x

n n

n

t t t dt t t t t x x x x
∞

=

+ + + + = + + + + = + + + + + =∑∫ ⋯ ⋯ ⋯ ⋯ . Notice 

this is the same as what you'd obtain by simply integrating the general term of the series for f, 

give or take some re-indexing: 
11 1

1
0 0 1

n n n

n n

n n n

x dx x x
∞ ∞ ∞

+

+
= = =

= =∑ ∑ ∑∫ . 

  As in part (b), the radius of convergence will remain the same as for ( )f x . We need only check 

the endpoints, since they may converge after integration. 

  x = 1: 1 1

1 1

n

n n

n n

∞ ∞

= =

=∑ ∑ . This is the harmonic series. It diverges. 

  x = -1: 
( 1)

1

n

n

n

∞
−

=

∑ . This is the (opposite of the) alternating harmonic series. It converges. 

  Interval of convergence: -1 ≤ x < 1. 

66. a. 
1

1 ( 3) 2 2
2 2 2 2( 3)

lim lim lim ( 3) 3
n

n

n
n

a x n n

n na xn n n
x x

+
+ −

+ +−→∞ →∞ →∞
= ⋅ = ⋅ − = − . 

3 1 1 3 1 2 4x x x− < ⇒ − < − < ⇒ < <  

x = 4: 
(4 3) 1 1 1

2 2 2
1 1 1

n n

n n n

n n n

∞ ∞ ∞
−

= = =

= = ⋅∑ ∑ ∑ . This is the harmonic series. It diverges. 

x = 2: 
(2 3) ( 1) ( 1)1

2 2 2
1 1 1

n n n

n n n

n n n

∞ ∞ ∞
− − −

= = =

= = ⋅∑ ∑ ∑ . This is the opposite of the alternating harmonic series. It 

converges. 

Interval of convergence: 2 4x≤ < . 

 b. 
1( 3) 11 1

2 2 2
1 1 0

( ) ( 3) ( 3)
n

x n n

n n n

f x x x
−

∞ ∞ ∞
− −

= = =

′ = = ⋅ − = ⋅ −∑ ∑ ∑ . This series is geometric with r = x – 3. It 

converges iff 3 1x − < . 3 1 1 3 1 2 4x x x− < ⇒ − < − < ⇒ < < . 

  Interval of convergence: 2 < x < 4. (Note that we have "lost" the endpoint x = 2.) 

 c. ( ) ( )2 3 2 3 4 2 3 4( 3) ( 3) ( 3) ( 3) ( 3) ( 3) ( 3) ( 3) ( 3)3
2 4 6 2 2 3 4 4 6 2 2 3 4 4 6 2( 1)

3
3

n
x x

t t t t t x x x xt

n n
dt

− − − − − − − − −−
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

+ + + = + + + = + + + + +∫ ⋯ ⋯ ⋯ ⋯  or 

1 1( 3) ( 3) ( 3)1
2( 1) ( 1) 2 2 ( 1)

2 1 1

n n n
x x x

n n n n n n

n n n

+ +
∞ ∞ ∞

− − −

⋅ − + ⋅ +
= = =

= =∑ ∑ ∑ , which is what we would have obtained from formally 

antidifferentiating the general term. 

  We need check only the endpoints of the interval from part (a). 



  x = 4: 2

(4 3)1 1 1
2 ( 1) 2

1 1

n

n n n n
n n

∞ ∞
−

+ +
= =

⋅ = ⋅∑ ∑ . This series converges by comparison to the convergent p-series 

2

1

n∑  (p = 2 > 1): 
( )

2 2

22

1/

1/
lim lim 1n n n

nn nn n

+

+→∞ →∞
= = , which is positive and finite. 

  x = 2: 2

(2 3) ( 1)1 1
2 ( 1) 2

1 1

n n

n n n n
n n

∞ ∞
− −

+ +
= =

⋅ = ⋅∑ ∑ . The absolute-value version of this series is the one just considered. 

This series converges absolutely. 

  Interval of convergence: 2 ≤ x ≤ 4. (Note that we have "gained" the endpoint x = 4.) 

67. a. 
1 2 1 2

1

1 2 2 1

1( 1) ( 1) ( 1) ( 1)3 3
33 ( 1) ( 1) 3

lim lim lim ( 1)
n n n n

n

n n n n
n

a xn x n

a n x nn n n
x

+ +
+

+ +

+− ⋅ + ⋅ + +

− ⋅ ⋅ +→∞ →∞ →∞
= ⋅ = ⋅ ⋅ + =  

1 1
3 3

1 1 1 3 1 3 4 2
x x x x

+ +< ⇒ − < < ⇒ − < + < ⇒ − < <  

x = -4: 
2 2 2( 1) ( 1) ( 3) ( 1) ( 1) 3 2

3 3 3
0 0 0 0

( 4 1)
n n n n n n

n n n

n n nn

n n n n

n
∞ ∞ ∞ ∞

− ⋅ − ⋅ ⋅ − − ⋅ ⋅ − ⋅

= = = =

⋅ − + = = =∑ ∑ ∑ ∑ . This series clearly fails the n
th
 

term test. 2lim
n

n
→∞

= ∞ . The series diverges. 

x = 2: 
2( 1) 2

3
0 0

(2 1) ( 1)
n

n

n n n

n n

n
∞ ∞

− ⋅

= =

+ = − ⋅∑ ∑ . This is like the previous series, but alternating. The 

alternation will not help the series pass the n
th
 term test. This series diverges. 

Interval of convergence: -4 < x < 2 

 b. 
2( 1)2 391 4

3 9 27 3
( ) 0 ( 1) ( 1) ( 1) ( 1)

n

n

n n
f x x x x x

− ⋅= − + + + − + + + + +⋯ ⋯  

  
3 3( 1) ( 1)2 1 191 4

3 9 27 3 3
1

( ) 2( 1) 3( 1) ( 1) ( 1)
n n

n n

n nn n

n

f x x x x x
∞

− ⋅ − ⋅− −−

=

′ = + ⋅ + − ⋅ + + + ⋅ + + = ⋅ +∑⋯ ⋯  

  The radius of convergence for ( )f x′  will be the same as for ( )f x . Furthermore, since the series 

for ( )f x  diverged at both endpoints, the series for ( )f x′  will also diverge at both endpoints. 

  Interval of convergence: -4 < x < 2 

 c. We integrate term by term: 

( ) ( )
2 3 4

2 3 4 2 1

( 1) ( 1) ( 1)2 39 91 4 1 4
3 9 27 3 2 9 3 27 4

1
1

( 1) ( 1) ( 1) ( 1) ( 1)91 4
3 2 9 3 27 4 13

( 1) ( 1) ( 1)

n n

n

x x
t t t

x x x n x

n

t t t dt

+

+ + +−

−
−

+ + + − ⋅ +−
+

− + + + − + + = + − +

= + − + + ⋅ +

∫ ⋯ ⋯

⋯ ⋯

 

In summation notation: 
2 1( 1) ( 1)

13
1

n n

n

n x

n

n

+
∞

− ⋅ +

+
=

⋅∑ . 

The radius of convergence will be the same as that for ( )f x . We need only check endpoints to 

see if we have "gained" either of them. 

x = -4: 
2 1 2 1 2 1 1 2( 1) ( 4 1) ( 1) ( 3) ( 1) ( 1) 3

1 1 13 3 3 ( 1)
1 1 1 1

3
n n n n n n n

n n n

n n n n

n n nn
n n n n

+ + + +
∞ ∞ ∞ ∞

− ⋅ − + − ⋅ − − ⋅ ⋅ − ⋅

+ + +⋅ +
= = = =

⋅ = ⋅ = = − ⋅∑ ∑ ∑ ∑ . This series still fails the 

n
th
 term test. 

2

1
lim 0n

n
n

+
→∞

= ∞ ≠ . The series diverges. 

x = 2: 
2 1 2 2 1 21( 1) (2 1) ( 1) ( 1) 3 ( 1)3

1 1 13 3 3 ( 1)
1 1 1 1

3
n n n n n nn

n n n

n n n n

n n nn
n n n n

+ ++
∞ ∞ ∞ ∞

− ⋅ + − ⋅ − ⋅ ⋅ − ⋅

+ + +⋅ +
= = = =

⋅ = ⋅ = = ⋅∑ ∑ ∑ ∑ . Again, this is the same as the 

previous series, but alternating. It also fails the n
th
 term test and diverges. 

Interval of convergence: -4 < x < 2 

68. a. 
1

1 2 1 2 1
2 3 2 3

lim lim lim
n

n

n
n

a x n n

n na xn n n
x x

+
+ + +

+ +
→∞ →∞ →∞

= ⋅ = ⋅ =  

1 1 1x x< ⇒ − < <  



1:x =  1 1
2 1 2 1

0 0

n

n n

n n

∞ ∞

+ +
= =

=∑ ∑  This series diverges. (See Section 7, Problem 19.) 

1x = − : 
( 1)

2 1
0

n

n

n

∞
−

+
=

∑ . This is an alternating series with 1
2 1n n

a
+

= . 1
2 1

lim lim 0n n
n n

a
+

→∞ →∞
= = . Also 

1 1 1
2( 1) 1 2 3 2 1n n n+ + + +

= <  for all n ≥ 0. Therefore, this series converges by the AST. 

Interval of convergence: -1 ≤ x < 1 

 b. 
2 3 4

3 5 7 9
( ) 1 x x x xf x ≈ + + + + . 1 1 1 1

3 5 7 9
( 1) 1 0.83492f − ≈ − + − + = . 

 c. Since the series for ( 1)f −  is alternating, the maximum possible error is the first omitted term, in 

this case 1/11. Therefore, we have 0.8349 0.0909 ( 1) 0.8349 0.0909f− ≤ − ≤ +  or 

0.7440 ( 1) 0.9258f≤ − ≤ . 

69. a. 
1 1

1

1 1

( 1) ( 3) 2 ! !2 1 1
( 1)! 2 12 ( 1)! ( 1) ( 3) 2

lim lim lim ( 3) lim ( 3) 0
n n n n

n

n n n n
n

a x n n

n na n xn n n n
x x

+ +
+

+ +

− ⋅ − ⋅
+ +⋅ + − ⋅ −→∞ →∞ →∞ →∞

= ⋅ = ⋅ ⋅ − = ⋅ ⋅ − = . Since this limit 

is less than 1 for all x, the series converges for all x. The radius of convergence is infinite. 

 b. 
2 3

2 3

( 3) ( 3) ( 3) 2 31 1 1
2 1! 2 8 482 2! 2 3!

( ) 1 1 ( 3) ( 3) ( 3)
x x x

f x x x x
− − −

⋅ ⋅ ⋅
≈ − + − = − − + − − −  

  291 1 1
2 8 48 48

(4) 1 0.60416666f ≈ − + − = = … . 

 c. Since the series for (4)f  is alternating, the error in a partial sum is given by the first omitted 

term. In this case, the error is no more than 4

1 1
3842 4!

0.00260416666
⋅

= = … . 

 d. In the series for (4)f , 1

1
1 2 ( 1)!nn n

a ++ ⋅ +
= . Solving 1

61

2 ( 1)!
10n

n
+

−

⋅ +
<  by table, we see that n must be at 

least 7. We need to use at least 7 (4)P  to achieve the desired accuracy. Of course, there's a 

constant term in 7 ( )P x , so there are actually eight terms needed to guarantee error less than 10
-6

. 

70. a. 
1

1 1 1 1( )

( )
lim lim lim ( ) lim

n
n n n n

n
n nn n

a c x a c c

c ca c x an n n n
x a x a L x a

+
+ + + +−

−→∞ →∞ →∞ →∞
= = − = ⋅ − = − . As usual, we require this limit 

to be less than 1. 11
L

L x a x a− < ⇒ − < .  

 The radius of convergence of this series is 1/L. 

 b. 1 1 1 1 1
L L L L L

x a x a a x a− < ⇒ − < − < ⇒ − < < + . The interval of convergence is 1 1
L L

a x a− < < + , 

give or take convergence at the endpoints. 

 

 

Section 10 
 

1. 
2 4 2 2

2! 4! (2 )!

0

( 1)

(2 )!
cos( ) 1 ( 1)

n n n
nx x x

n

n

x

n
x

∞

=

−
= − + − + − + =∑⋯ ⋯  

 
1 2 2 2

1

2

( 1) (2 )!

(2 2)! (2 2)(2 1)( 1)
lim lim 0 1lim

n n
n

n n
n n n

a x n x
n n na xn

+ +
+

→∞ →∞

−

+ + +−→∞
= = <= ⋅  for all x. 

 Interval of convergence: -∞ < x < ∞ 

2. By Taylor's Theorem, 
( 1)2 21

2! (2 )!
cos 1 ( )

n
n

nn
x x x R x

−= − + + +⋯  where 
1

( 1)!
( ) 0

nM
n n

R x x
+

+
≤ ⋅ − . Since the 

cosine function and all its derivatives are bounded by 1 for all x, we take M = 1. Then 
1

( 1)!
( )

n
x

n n
R x

+

+
= . 

Taking the limit of the error bound, we have 
1

( 1)!
lim ( ) lim 0

n
x

n n
n n

R x
+

+
→∞ →∞

≤ =  since the factorial denominator 

will ultimately dominate the exponential numerator for any fixed x. This shows that in the limiting 
case of having infinitely many terms (i.e., the power series) the error goes to zero; the power series 

for the cosine function converges exactly to the function. 



3. 2

0

1
1

1
n

n

n

x
x x x x

∞

=

−
= + + + + =∑⋯ ⋯  

 This is a geometric series with common ratio x. It converges iff 1x < , i.e. on -1 < x < 1. 

 Interval of convergence: -1 < x < 1 

4. 2

2 4 2 2

0

1

1
1 ( 1) ( 1)

n n n n

n
x

x x x x
∞

=
+

= − + − + − + = −∑⋯ ⋯  

 This is a geometric series with common ratio x
2
. It converges iff 2 1x < . 

2
1 1 1 1x x x< ⇒ < ⇒ − < < . 

 Interval of convergence: -1 < x < 1 

5. 
3 5 2 1 2 1

3 5 2 1

0

( 1)

2 1
arctan ( 1)

n n n
nx x x

n

n

x

n
x x

+ +
∞

+

=

−

+
= − + − + − + =∑⋯ ⋯  

 This series is obtained by term-by-term integration of the series in Problem 4. Therefore, all we need 

to do is check for convergence at the endpoints 

 x = 1: 
2 1

0 0

( 1) (1) ( 1)

2 1 2 1

n n n

n n

n n

+
∞ ∞

= =

− −

+ +
=∑ ∑ . This is an alternating series with 1

2 1n n
a

+
= . 1

2 1
lim lim 0

n n
n n

a
+

→∞ →∞
= =  and 

1 1 1
2( 1) 1 2 3 2 1n n n+ + + +

= <  for all n ≥ 0. Therefore this series converges by the AST. 

 x = -1: 
2 1

0 0 0

( 1) ( 1) ( 1) ( 1) ( 1)

2 1 2 1 2 1

n n n n

n n n

n n n

+
∞ ∞ ∞

= = =

− − − ⋅ − −

+ + +
= = −∑ ∑ ∑ . This is the opposite of the series as for x = 1. It also 

converges. 

 Interval of convergence: -1 ≤ x ≤ 1 

6. We begin by finding derivatives, dividing by factorials, and hoping to see a pattern. 

1

2 1
2

3 1
3

(4) 4 (4) 1
4

( ) ln (1) 0 0 / 0! 0

( ) (1) 1 1/1! 1

( ) (1) 1 1/ 2!

( ) 2 (1) 2 2 / 3!

( ) 6 (1) 6 6 / 4!

f x x f

f x x f

f x x f

f x x f

f x x f

−

− −

−

− −

= → = → =

′ ′= → = → =

′′ ′′= − → = − → − =

′′′ ′′′= → = → =

= − → = − → − =

 

Generalizing, 
2 3 1

( 1) ( 1) ( 1)

2 3

1

( 1) ( 1)1
ln( ) ( 1) ( 1)

n n n
x x x

n

n

xn

n
x x

+
∞

− − −

=

− −+
= − − + − + − + =⋅ ∑⋯ ⋯ . 

2 1
1

1

( 1) ( 1)

1 1( 1) ( 1)
lim lim ( 1) 1lim

n n
n

n n
n n n

a x n n
n na xn

x x
+ +

+

+
→∞ →∞

− −

+ +− −→∞
= − = −= ⋅ . 

1 1 1 1 1 0 2x x x− < ⇒ − < − < ⇒ < <  

x = 0: 
1

1 1 1

( 1) ( 1) 1 1
n n

n n n

n n n

+
∞ ∞ ∞

= = =

− − −= = −∑ ∑ ∑ . This is the (opposite of the) harmonic series; it diverges. 

x = 2: 
1 1( 1) (2 1) ( 1)

1 1

n n n

n n

n n

+ +
∞ ∞

− − −

= =

=∑ ∑ . This is the alternating harmonic series; it converges. 

Interval of convergence: 0 < x ≤ 2 

Alternate approach: Since ( ) ( )ln( ) ln 1 ( 1) ln 1 ( 1)x x x−= + − = − − , we can simply substitute ( 1)x− −  

in for x in the series for ln(1 )x−  to obtain the same result. The interval of convergence shifts one unit 

to the right to give (0, 2]. 

7. To the tableau! 



( )

( )
( )

( )
( )

4 1/ 2 1
3 0! 2

3/ 2 34
3 1! 2

4 1/2 1
3 2! 4

3/ 2 34
3 3! 12

(4) (4) 4 1/2 1
3 4! 48

( ) cos 1/ 2

( ) sin 3 / 2

( ) cos 1/ 2

( ) sin 3 / 2

( ) cos( ) 1 / 2

f x x f

f x x f

f x x f

f x x f

f x x f

π

π

π

π

π

− −

− −

− −

= → = − → =

′ ′= − → = − → =

′′ ′′= − → = → =

′′′ ′′′= → = → =

= → = − → =

 

Therefore ( ) ( ) ( )
2 33 34 4 41 1

2 2 3 4 3 12 3
cos( )x x x xπ π π−= − + + + + + +⋯ . 

8. Again, we make a tableau. 

0!

1!

2!

3!

(4) (4)

4!

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

e

e

e

e

e

x e ee

x e ee

x e e

x e e

x e e

f x e f e e e

f x e f e e e

f x e f e e

f x e f e e

f x e f e e

= → = → =

′ ′= → = → =

′′ ′′= → = →

′′′ ′′′= → = →

= → = →

 

Therefore 
2

2! !

0

( )

!
( ) ( ) ( )

e e e n
x e e ne e

n

n

e x e

n
e e e x e x e x e

∞

=

−
= + − + − + + − + =∑⋯ ⋯ . 

9. As we know, 
2 1

0

( 1)

(2 1)!
sin( )

n n

n

x

n
x

+
∞

=

−

+
=∑ . We can just sub in x – 2 for x to get a series for sin( 2)x − . 

3 5 2 1 2 1
( 2) ( 2) ( 2)

3! 5! (2 1)!

0

( 1) ( 2)

(2 1)!
sin( 2) ( 2) ( 1)

n n n
x x xn

n

n

x

n
x x

+ +
∞

− − −

+

=

− −

+
− = − − + − + − ⋅ + =∑⋯ ⋯  

10. Since 
3 5 2 1 2 1

3 5 2 1

0

( 1)

2 1
arctan( ) ( 1)

n n n
nx x x

n

n

x

n
x x

+ +
∞

+

=

−

+
= − + − + − + =∑⋯ ⋯ , by substitution we have 

( ) ( ) ( ) ( )
3 5 2 1

2 2 2 4 2
2 2

3 5 2 1

0

( 1)

2 1
arctan ( 1)

n
n nx x xn

n

n

x

n
x x

+
+

∞

+

=

−

+
= − + − + − + =∑⋯ ⋯ . 

1 4 6
1

4 2

( 1) 4 42 1 2 1
2 3 2 3( 1)

lim lim lim
n n

n

n n
n

a x n n

n na xn n n
x x

+ +
+

+

− + +
+ +−→∞ →∞ →∞

= ⋅ = ⋅ = . 
4

1 1 1 1x x x< ⇒ < ⇒ − < < . 

x = 1: 
4 2( 1) 1 ( 1)

2 1 2 1
0 0

n n n

n n

n n

+
∞ ∞

− ⋅ −

+ +
= =

=∑ ∑ . This series converges; see Problem 5. 

1x = − : 
4 2( 1) ( 1) ( 1)

2 1 2 1
1 1

n n n

n n

n n

+
∞ ∞

− ⋅ − −

+ +
= =

=∑ ∑ . This series still converges. 

Interval of convergence: -1 ≤ x ≤ 1 

11. Since 
2

2!

0

!
1

nx x

n

x
n

e x
∞

=

= + + + =∑⋯ , multiplying through by x gives 

( )2 3 1 12

2! 2! ! !

0

1
n nx x x x x
n n

n

xe x x x x
+ +

∞

=

= + + + = + + + + + =∑⋯ ⋯ ⋯  

12. a. We start with a tableau. 



( )

( )

( )

( )

( )

2

2

2

2

2

2

2 2
1!

3

4 2 12
3!

(4) 5 3 (4)

(5) 6 4 2 (5) 120
5!

( ) 2 (0) 0 0

( ) 4 2 (0) 2

( ) 8 12 (0) 0 0

( ) 16 48 12 (0) 12

( ) 32 160 120 (0) 0 0

( ) 64 480 720 120 (0) 120

x

x

x

x

x

x

f x xe f

f x x e f

f x x x e f

f x x x e f

f x x x x e f

f x x x x e f

= → = →

′ ′= + → = →

′′ ′′= + → = →

′′′ ′′′= + + → = →

= + + → = →

= + + + → = →

 

Therefore we have the following for the Maclaurin series: 
2

2 1

3 5 3 5120 6 2 60 212
3! 5! 3 2 1! 5 4 3 2!

3 5 2 1 22 2 2
1! 2! ! !

0

2 2 2

2
n

x

n x
n n

n

xe x x x x x x

x x x x
+

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

∞
+

=

= + + + = + + +

= + + + + + =∑

⋯ ⋯

⋯ ⋯
 

(The seemingly arbitrary cancelling will become clear as we proceed through parts (b) and (c).) 

 b. Since 
2

2! !

0

1
nx x x

n

n

e x
∞

=

= + + + =∑⋯ , it follows by substitution that 

( ) ( )
2 3

2 2
2 22

2! 3! !

0

1
nx xx x

n

n

e x
∞

=

= + + + + =∑⋯ . We now multiply through by 2x to obtain 

2 4 6

5 7 2 1 2 1

2

2! 3!

3 2 2 2 2
2! 3! ! !

0

2 2 2 2 2

2 2 .
n n

x x x

x x x x
n n

n

xe x x x x x

x x
+ +

∞

=

= + ⋅ + ⋅ + ⋅ +

= + + + + + + =∑

⋯

⋯ ⋯
 

 c. For this approach, we simply differentiate the series for 
2

x
e  term by term. 

  

2 4 6

2 3 5

2

2 1 2 1 2 1

2

2! 3!

0

4 6

2! 3!

1 1 0

!

2 2 2
! ( 1)! !

( ) 1

( ) 2 0 2

n

n n n

x x x

n

x x x

n n n

x
n

n x x x
n n n

g x e x

g x xe x
− − +

∞

=

∞ ∞ ∞

= = =

⋅
−

= = + + + + =

′ = = + + + + = = =

∑

∑ ∑ ∑

⋯

⋯

 

 d. Yes! 

13. After using the hint, we will substitute 2x into the series for cos(x). 

 

( ) ( )

2( 1) (2 )2 1 1 1 1
2 2 2 2 (2 )!

0

2 4 2 4 2 41 1 1 1 1 1 2 1
2 2 2 24 2 2 3 3

cos cos(2 )

1 4 16 1 2 1

n nx

n

n

x x

x x x x x x

∞
− ⋅

=

= + = + ⋅

= + − ⋅ ⋅ + ⋅ ⋅ − = + − + − = − + −

∑

⋯ ⋯ ⋯

 

14. Rather than attempt to multiply the series for sine and cosine, we will use a trig identity. 

 
2 1 2 1 2 4

3 3 3

( 1) (2 ) ( 1) 23

(2 1)! (2 1)!
0 0

4 6 88 32
3! 5!

( ) 2 sin cos 2sin cos sin(2 )

2

n n n n n
x x

n n

n n

f x x x x x x x x x

x

x x x

+ + +
∞ ∞

− − ⋅ ⋅

+ +
= =

= = ⋅ =

= ⋅ =

= − + −

∑ ∑

⋯

 

15. We begin with a tableau. 



1/33 2
0!

2/3 1/121 1 1
3 12 1! 12

5/3 1/1442 1 1
9 144 2! 288

8/310 5 5/3456 5
27 3456 3! 20736

( ) (8) 2 2

( ) (8)

( ) (8)

( ) (8)

f x x x f

f x x f

f x x f

f x x f

−

− −− − −

−

= = → = → =

′ ′= → = → =

′′ ′′= → = → =

′′′ ′′′= → = → =

 

2 351 1
12 288 20736

( ) 2 ( 8) ( 8) ( 8)f x x x x= + − − − + − −⋯  

The radius of convergence of the series is 8. This is the distance from the center (x = 8) to the x-

coordinate of the vertical tangent (x = 0). The function is not differentiable where its graph has a 

vertical tangent. 

16. Notice that ( )ln(4 ) ln(1 3 ) ln 1 ( 3)x x x+ = + + = + + . We can simply substitute x + 3 in for x n the 

series for ( ) ln(1 )g x x= + . 

( )

2 2 11 1
2 3

( 3) ( 3)2 2 1 11 1
2 3

1

ln(1 ) ( 1)

ln 1 ( 3) ( 3) ( 3) ( 3) ( 1) ( 1)

n

n n

n x

n

x xn n

n n

n

x x x x

x x x x

+

∞
+ ++ +

=

+ = − + − + − ⋅ +

+ + = + − + + + − + − ⋅ + = − ⋅∑

⋯ ⋯

⋯ ⋯
 

17. a. As usual, we make a tableau. 
1
0!

1

1!

( 1)2

2!

( 1)( 2)3

3!

( ) (1 ) (0) 1 1

( ) (1 ) (0)

( ) ( 1)(1 ) (0) ( 1)

( ) ( 1)( 2)(1 ) (0) ( 1)( 2)

k

k k

k kk

k k kk

f x x f

f x k x f k k

f x k k x f k k

f x k k k x f k k k

−

−−

− −−

= + → = → =

′ ′= + → = → =

′′ ′′= − + → = − →

′′′ ′′′= − − + → = − − →

 

From this we see that 
( )( 1) ( 1)( 1) ( 1)( 2)2 3

2! 3! !
( ) 1

k k k nk k k k k n

n
f x kx x x x

− ⋅ ⋅ − −− − −= + + + + + +
⋯

⋯ ⋯ . Using 

combinations this can be rewritten as 
2

0

( )
0 1 2

n

n

k k k k
f x x x x

n

∞

=

       
= + + + =       
       

∑⋯  (though some 

authors only define this notation if k is an integer). 

 b. The numerator of 
k

n

 
 
 

 is ( 1)( 2) ( 1)k k k k n− − − +⋯ . If n is greater than k, then one of these 

factors will take the form (k – k); it will vanish. Hence 0
k

n

 
= 

 
 when n > k. If it is indeed 

the case that n > k, then only the terms up through degree n will be non-zero. This means the 

series will terminate to generate a regular polynomial. In this case, we have 
0

( )
k

n

n

k
f x x

n=

 
=  

 
∑ . 

  If k is an integer, the binomial theorem would give 
0

1
n k n

n

k
x

n

∞
−

=

 
⋅ 

 
∑ , but since all powers of 1 are 1, 

this reduces to what we already have for ( )f x . 

 c. We have 
( )( )( 1)( 2) ( 2) ( 1)

!

k k k k n k n n

n n
a x

− − ⋅ ⋅ − − − −
=

⋯
 and 

( )( )( )( 1) ( 2) ( 1) 1

1 ( 1)!

k k k n k n k n n

n n
a x

− ⋅ ⋅ − − − − − +

+ +
=

⋯
. Now we are 

ready for the ratio test. 

  
1

1 ( 1) ( 1)( ) ! !
( 1)! ( 1)! 1( 1) ( 1)

lim lim lim ( ) lim
n

n

n
n

a k k k n k n x n n k n

n n na k k k n xn n n n
k n x x x

+
+ − ⋅ ⋅ − + − ⋅ −

+ + +− ⋅ ⋅ − + ⋅→∞ →∞ →∞ →∞
= ⋅ = ⋅ − ⋅ = ⋅ =⋯

⋯
 

  We require that 1x < , so the radius of convergence is 1. 

 d. i. Here we have k = 5/2. 
(5/2)(3/2) (5/2)(3/2) (5/2 1)25

2 2! !
( ) 1

n n

n
g x x x x

⋅ ⋅ − += + + + + +⋯
⋯ ⋯  

 ii. ( )
3

2
( ) 2 1h x x

−

= + . If we let 3( ) (1 )f x x −= + , then ( )2
( ) 2h x f x= . 



  

( )

( ) ( )

( 3)( 4) ( 3)( 4)( 5)2 3

2! 3!

( 3)( 4) ( 3)( 4)( 5)2 2 4 6

2! 3!

( 3)( 4) ( 3)( 4)( 5)2 2 4 6

2! 3!

( 3)( 3 1) ( 3 1) 2

!
0

( ) 1 3

1 3

2 2 1 3

( ) 2
n n

n

n

f x x x x

f x x x x

f x x x x

h x x

− − − − −

− − − − −

− − − − −

∞
− − − ⋅ ⋅ − − +

=

= − + + +

= − + + +

= − + + +

= ⋅∑ ⋯

⋯

⋯

⋯  

 iii. ( ) ( )( )2

1/ 21/2
2 21

1
( ) 1 1

x
k x x x

−−

−
= = − = + − . Let 1/2( ) (1 )f x x −= +  so that ( )2

( )k x f x= − . 

  

( ) ( ) ( ) ( )
( )

( 1/2)( 3/2) ( 1/ 2)( 3/2)( 5/2)2 31
2 2! 3!

2 3( 1/2)( 3/2) ( 1/2)( 3/2)( 5/2)2 2 2 21
2 2! 3!

( 1/ 2)( 3/2) ( 1/2)( 3/ 2)( 5/2)2 4 61
2 2! 3!

( 1/2)( 3/ 2) ( 1/2 1) 2

!
0

( ) 1

1

1

( )
n n

n

n

f x x x x

f x x x x

x x x

k x x

− − − − −

− − − − −

− − − − −−

∞
− − ⋅ ⋅ − − +

=

= − + + +

− = − − + − + − +

= − + − +

=∑ ⋯

⋯

⋯

⋯
 

 e. 
2

1

1
arccos( )d

dx
x

x
−

= − . We simply need to integrate the series for ( )k x , take its opposite, and make 

sure that the function obtained passes through the point (0, π/2). 

  

( )

( )

2 4 6 3 5 73 5 3 51 1
2 8 16 6 40 112

3 5 73 51
6 40 112

3 5 73 51
6 40 112

( ) 1

arccos( )

k x dx x x x dx C x x x x

x C x x x x

C x x x x

= + + + + = + + + + +

= − + + + + +

= − − − − −

∫ ∫ ⋯ ⋯

⋯

⋯

 

  All terms in this series vanish except for the constant term when x = 0. Therefore we take 

/ 2C π=  to ensure agreement with the arccosine function. 

  
3 5 73 51

2 6 40 112
( )l x x x x xπ= − − − − −⋯  

18. Here we have k = 1/m, so 
(1/ )(1/ 1)1/ 21

2!
( 1) 1

m mm

m
x x x

−+ = + + +⋯ . Simplifying the quadratic coefficient 

gives ( ) ( ) 2

(1/ )(1/ 1) 1 11 1 1 1 1
2 2 2 2

1
m m m m

m m m m m

− − −= ⋅ ⋅ − = ⋅ ⋅ =  so that 2

1/ 211

2
( 1) 1

m m

m m
x x x−+ = + + +⋯ . If x is close to 

zero (the center of the series), then the second-degree partial sum of this series will give good 

approximations to the actual value of 1/(1 ) mx+ . (If x is close to zero, x
3
 and higher-order powers of x 

are really small.) This means that the given polynomial is a good approximation for 1/( 1) mx + . 

19. We can still use our tableau, though we need to modify it a bit. 

1

2

2

2

3

2

3
0!

( 1) (1 1) 2
1!1

( 1) (2 1) 3 3/4 3
4 2! 82

( 1) (3 1) 4/94 2
9 3! 273

(0) 3 3

(0) 2 2

(0)

(0)

f

f

f

f

− ⋅ + −

− ⋅ +

− ⋅ + −− −

= → =

′ = = − → = −

′′ = = → =

′′′ = = → =

 

2

( 1) ( 1)2 33 2
8 27 !

( ) 3 2
n

n n

n n
f x x x x x

− ⋅ +

⋅
= − + − + + +⋯ ⋯  (Don't forget to divide by n!.) 

1 1 2 2
1

2 2

( 1) ( 2) ! 2 !
1 ( 1)! 1( 1) ( 1)! ( 1) ( 1) ( 1)

lim lim lim lim 0 1
n n

n

n n
n

a n x n n n n n x

n n na n n n x nn n n n
x

+ +
+ − ⋅ + ⋅ ⋅ +

+ + ++ ⋅ + − ⋅ + ⋅ +→∞ →∞ →∞ →∞
= ⋅ = ⋅ ⋅ ⋅ = = < . This series converges 

for all x. 

Interval of convergence: -∞ < x ∞. 

20. We again use the tableau to organize our computation of the coefficients. 



0 2

0

1 2

1

2 2

2

3 2

3

3 0 1
0!2

3 1 2
1!2

3 2 13 13/4 13
4 2! 82

3 3 9 9/2 3
2 3! 42

(0) 1 1

(0) 2 2

(0)

(0)

g

g

g

g

+

+

+

+

= = → =

′ = = → =

′′ = = → =

′′′ = = → =

 

22 313 3 3
8 4 2 !

( ) 1 2
n

n

nn

n
g x x x x x+

⋅
= + + + + + +⋯ ⋯  

( )
( )

1 2 1
1 2

1

1 2 12

3 ( 1) 3 ( 1)2 ! 2

2 ( 1)! 3 23

1
lim lim lim 0 1

1

n n
nn n

n

n n nn n
n

n xa nn

a n nn xn n n
x

n

+ + +
+

+ +

+ + + +⋅

⋅ + ++→∞ →∞ →∞
= ⋅ = ⋅ ⋅ ⋅ = <

+
; the power series converges for 

all real numbers. 

Interval of convergence: x−∞ < < ∞  

21. We begin with the tableau. 
0! 1

0 1 0!

1! 1/21 1
1 1 2 1! 2

2! 2/32 1
2 1 3 2! 3

3! 6 6/4 1
3 1 4 3! 4

(2) 1 1

(2)

(2)

(2)

h

h

h

h

+

+

+

+

= = → =

′ = = → =

′′ = = → =

′′′ = = → =

 

2 31 1 1 1
2 3 4 1

( ) 1 ( 2) ( 2) ( 2) ( 2)
n

n
h x x x x x

+
= + − + − + − + + − +⋯ ⋯  

1
1 ( 2) 1 1

2 2( 2)
lim lim lim ( 2) 2

n
n

n
n

a x n n

n na xn n n
x x

+
+ − + +

+ +−→∞ →∞ →∞
= ⋅ = ⋅ − = −  

2 1 1 2 1 1 3x x x− < ⇒ − < − < ⇒ < <  

x = 3: 1 1 1
1 1

0 0 1

(3 2)
n

n n n

n n n

∞ ∞ ∞

+ +
= = =

− = =∑ ∑ ∑ . This is the harmonic series. It diverges. 

x = 1: 
1( 1) ( 1)1

1 1
0 0 1

(1 2)
n n

n

n n n

n n n

−
∞ ∞ ∞

− −

+ +
= = =

− = =∑ ∑ ∑ . This is the alternating harmonic series. It converges. 

Interval of convergence: 1 ≤ x < 3 

22. a. 
( ) 22

( 1) ! ( 1) ( 1) 2 3 41 1 1
8 17 3222 !

2 2

( ) 8 ( 1) 8 8 ( 1) ( 1) ( 1)
n n n

nn

n xn

nn n
n n

f x x x x x
∞ ∞

− − +

++
= =

= + ⋅ + = + = + + − + + + +∑ ∑ ⋯ . 

 
1 1 2 2

1

1 2 1 2

( 1) ( 1) 2 2 1
22 ( 1) ( 1) ( 1) 2 ( 1)

lim lim lim ( 1) 1
n n n n

n

n n n n
n

a x n n

a n x nn n n
x x

+ +
+

+ +

− ⋅ + + +

+ + − ⋅ + + +→∞ →∞ →∞
= ⋅ = ⋅ + = +  

 1 1
2 2

1 1 1 ( 1) 1 2 1 2 3 1x x x x+ < ⇒ − < + < ⇒ − < + < ⇒ − < < . 

 x = -3: 2 2 2

( 1) ( 3 1) ( 1) ( 2) 2

2 2 2
2 2 2

n n n n n

n n n
n n n

n n n

∞ ∞ ∞
− − + − ⋅ −

+ + +
= = =

= =∑ ∑ ∑ . 2

2

2
lim 1 0

n

n
nn +→∞

= ≠ . This series fails the n
th
 term test. It 

diverges. 

 x = 1: 2

( 1) 2

2
2

n n

n
n

n

∞
− ⋅

+
=

∑ . This series is the same as the previous one, but alternating. It still fails the n
th
 

term test. 

 Interval of convergence: -3 < x < 1 

 b. x = -1 is a critical point of the function since ( 1) 0f ′ − = . From the second-degree term of the 

Taylor series, we see that 
( 1) 1
2! 8

f ′′ − = . Therefore ( 1) 0f ′′ − > . The function has a local minimum at 

1x = −  by the second derivative test. 

 c. ( ) ( )
2 31 1

8 17
( ) ( 1) 8 ( 1) 1 ( 1) 1g x f x x x= − = + − + − − + +⋯  

  2

( 1)2 31 1
8 17 2

( ) 8
n

n

n

n
g x x x x

−

+
= + − + + +⋯ ⋯  



  
( ) ( ) ( ) ( )2

2

2 3 ( 1)2 2 2 21 1
8 17 2

( 1)4 6 21 1
8 17 2

( ) 8

( ) 8

n

n

n

n

n

n

n

n

h x g x x x x

h x x x x

−

+

−

+

= = + − + + +

= + − + + +

⋯ ⋯

⋯ ⋯

 

23. Since the coefficient are given by 
2 ( 1)

!

n n

n

⋅ +
, we know that 

( ) (0) 2 ( 1)

! !

n nf n

n n

⋅ += . Simplifying gives 

( ) (0) 2 ( 1)n nf n= ⋅ + . (4) 4(0) 2 (4 1) 80f = ⋅ + = . 

 Since the series we have is a Maclaurin series, we cannot determine values of the derivatives of f  at 

any x-value other than 0 exactly. We cannot determine (4) (1)f  exactly. 

24. The coefficient of 5( 3)x −  in the Taylor series will be given by 
( 5) (3)

5!

g
. Therefore 

( 5) 5 5

2

(3) ( 1) 3 243
5! 265 1

g − ⋅ −

+
= = . 

It follows that 
(5) 14580

13
(3)g = . 

25. 2 41 1
2! 4!

cos( ) 1x x x= − + −⋯  

 
( ) ( ) ( )

2 4
3 3 31 1

2! 4!

6 121 1
2! 24

cos 1

1

x x x

x x

= − + −

= − + −

⋯

⋯

 

 The desired coefficient is 1/24. 

26. 2 3 41 1 1
2! 3! 4!

1
x

e x x x x= + + + + +⋯  

 
( )2 2 2 3 41 1 1

2! 3! 4!

2 3 4 5 61 1 1
2! 3! 4!

1xx e x x x x x

x x x x x

= + + + + +

= + + + + +

⋯

⋯

 

 The desired coefficient is 1/4! = 1/24. 

27. We will take the indirect approach suggested in the problem. We begin with 

( )
21

2

( )

1 ( ) .

x

x x
f x

x x f x x

− −
=

− − =
 

 We now assume that there is a Maclaurin series for f(x). 

( )( )

( ) ( ) ( )

2 2 3

0 1 2 3

2 3 2 3 2 3

0 1 2 3 0 1 2 0 1

2 3

0 1 0 2 1 0 3 2 1

1 x x c c x c x c x x

c c x c x c x c x c x c x c x c x x

c c c x c c c x c c c x x

− − + + + + =

+ + + + − − − − − − − =

+ − + − − + − − + =

⋯

⋯ ⋯ ⋯

⋯

 

 For n ≥ 2, 1 2n n n
c c c− −− −  is the coefficient of nx  on the left side. 

 Equating coefficients of like powers, we see that 

0

1 0

2 1 0

3 2 1

0

1

0

0

c

c c

c c c

c c c

=

− =

− − =

− − =

 

 and, in general, 1 2 0
n n n

c c c− −− − =  for n ≥ 2. Rewriting this, we have 1 2n n n
c c c− −= + . 

 Since 0 0c = , 1 1c = . Now 2 (1 0) 0c − − = , so 2 1c = . From here and the fact that 1 2n n n
c c c− −= + , we 

can generate arbitrarily many coefficients. They are simply the Fibonacci numbers. 

 2 3 4 5( ) 1 1 2 3 5 n

n
f x x x x x x F x= + + + + + + +⋯ ⋯  where 

n
F  represents the n

th
 Fibonacci number. 

28. a. Rather than start from scratch, let's use some log properties. 



 

( ) ( )

( ) ( )
2 1

1
1

2 3 4 5 2 3 4 51 1 1 1 1 1 1 1
2 3 4 5 2 3 4 5

3 52 2
3 5 2 1

0

( ) ln ln 1 ln(1 )

2 2
n

x

x

x

n

n

f x x x

x x x x x x x x x x

x x x
+

+
−

∞

+
=

= = + − −

= − + − + − − − − − − − −

= + + + = ⋅∑

⋯ ⋯

⋯

 

 b. 
2 3

1

2 1

2 22 1 2 1
2 3 2 3

lim lim lim
n

n

n
n

a x n n

n na xn n n
x x

+
+

+

+ +
+ +

→∞ →∞ →∞
= ⋅ = ⋅ =  

  
2

1 1 1 1x x x< ⇒ < ⇒ − < <  

  x = 1: 
2 11 1

2 1 2 1
0 0

2 2
n

n n

n n

+
∞ ∞

+ +
= =

⋅ = ⋅∑ ∑ . This series diverges. (See Section 7, Problem 19.) 

  x = - 1: 
2 1( 1) 1 1

2 1 2 1 2 1
0 0 0

2 2 2
n

n n n

n n n

+
∞ ∞ ∞

− −
+ + +

= = =

⋅ = ⋅ = − ⋅∑ ∑ ∑ . Still diverges. 

  Interval of convergence: -1 < x < 1 

 c. Suppose α is a given positive number. We set 1
1

x

x
α +

−
=  and solve for x. 

1
1

1
1

(1 ) 1

1

1

1 ( 1)

x

x

x x

x x

x x

x

x α
α

α

α

α α

α α

α α

+
−

−
+

=

− = +

− = +

− = +

− = +

=

 

  The algebra above shows that for any positive number α (actually any number α, though we want 

to respect the domain of the natural logarithm function), we can find an x-value such that 1
1

x

x
α +

−
= . 

Furthermore, if α > 0, then 1
1

α
α

−
+

 lies between -1 and 1. (A rigorous proof of this fact is not terribly 

necessary in this context. Look at a graph of ( ) 1
1

f α
αα −

+
=  if you are not convinced of this.) Thus 

the desired x-value is in the interval of convergence of the series for ( )f x . 

 d. If 15α = , then 1 15 1 714
1 15 1 16 8

x α
α

− −
+ +

= = = = . 

  ( ) ( ) ( ) ( ) ( )
7
8

7
8

3 5 71 7 7 7 72 2 2
8 3 8 5 8 7 81

ln 2 2.51398
+

−
≈ + + + =  (Calculator value for ln(15): 2.70805) 

29. a. First note that 
0 0

2
sinh(0) 0e e

−−= =  while 
0 0

2
cosh(0) 1e e

−+= = . Furthermore, 

( ) ( )2 2
sinh cosh

x x x x
d d e e e e

dx dx
x x

− −− += = =  while ( ) ( )2 2
cosh sinh

x x x x
d d e e e e

dx dx
x x

− −+ −= = = . Now we 

attack the hyperbolic sine function. 

1
3!

(4) (4)

(5) (5) 1
5!

( ) sinh (0) 0 0

( ) cosh (0) 1 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

( ) cosh (0) 1

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

= → = →

= → = →

 

From this we see that 
3 5 2 11 1 1

3! 5! (2 1)!
sinh( )

n

n
x x x x x

+

+
= + + + + +⋯ ⋯ . Now for the hyperbolic 

cosine function. 



1
2!

(4) (4) 1
4!

(5) (5)

( ) cosh (0) 1 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

( ) cosh (0) 1

( ) sinh (0) 0 0

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

= → = →

= → = →

 

2 4 21 1 1
2! 4! (2 )!

cosh( ) 1
n

n
x x x x= + + + + +⋯ ⋯ . 

 b. 
2 4 61 1 1

2! 4! 6!
cosh( ) 1 ( ) ( ) ( )ix ix ix ix= + + + +⋯  

  

2 2 4 4 6 61 1 1
2! 4! 6!

2 4 61 1 1
2! 4! 6!

cosh 1

1 c (

)

os )

( i x i x i x

x x x x

ix = + + + +

= − + − + =

⋯

⋯
 

  ( )

3 5 71 1 1
3! 5! 7!

3 5 71 1 1
3! 5! 7!

3 5 71 1 1
3! 5! 7!

2

sinh( ) ( ) ( ) ( )

sin

sinh( ) sin

sin sin

ix ix ix ix ix

ix ix ix ix

i x x x x i x

i ix i i x

i x x

= + + + +

= − + − +

= − + − + =

− = − ⋅

= − =

⋯

⋯

⋯  

30. ( )
3 51 11

3 5 2 4tan 1 1
3 5

0 0 0
lim lim lim 1 1

x x xx

x x
x x x

x x
− − + −

→ → →
= = − + − =

⋯

⋯  

 Also, by l'Hospital's rule, 
1

1 21tan
1

0 0
lim lim 1xx

x
x x

−
+

→ →
= = . 

31. 
( ) ( ) ( )

2 4 81 1 4 81 1
2! 4! 2! 4!

4 4 4

cos 1 1 1 41 1 1
2! 4! 2

0 0 0 0
lim lim lim lim

x x x x x

x x xx x x x
x

−− − + − − + − − −

→ → → →
= = = + − =

⋯ ⋯

⋯  

 Also, by l'Hospital's rule, 
( ) ( ) ( ) ( ) ( )

2 2 2 2

4 3 2

cos 1 2 sin sin 2 cos 21 1
4 2 24 20 0 0 0 0

lim lim lim lim lim cos
x x x x x x

xx x xx x x x x
x

− − ⋅ − − ⋅
− −

→ → → → →
= = = = = . 

32. 
( )2 31 1 2 3 21 1 1 1

2! 3! 2! 3! 2! 3!

3 3 21 1 1
3! 3! 3!

1 1 2 21
sin 10 0 0 0

lim lim lim lim 2
x x x x x x x x x xx e

x x x x x xx x x x

− − + + + + − − − − − − − −− −

− + − + − +→ → → →
= = = = −

⋯ ⋯ ⋯

⋯ ⋯ ⋯
 

 Verifying by l'Hospital's rule… 1 1
sin cos

0 0
lim lim 2

x x
x e e

x x
x x

− − − −

→ →
= = − . 

33. ( ) ( ) ( ) ( )( ) ( )
2 4 62 2 2 2 4 8 121 1 1 1 1 1

2! 4! 6! 2! 4! 6!
cos 1 1x dx x x x dx x x x dx= − + − + = − + − +∫ ∫ ∫⋯ ⋯  

 ( ) ( 1)5 9 13 4 11 1 1
5 2! 9 4! 13 6! (4 1) (2 !

0

2

)
cos

n
n

n n

n

C x x x x xx Cx d
∞

− +

⋅ ⋅ ⋅ + ⋅
=

= + − + + + = +∫ ∑⋯  

34. 
( ) ( )

2 3 41 1 1 2 3 41 1 1
2! 3! 4! 2! 3! 4!

1 1 2 31 1 1 1
2! 3! 4!

1
x x x x x x x x xe

x x x
dx dx dx x x x dx

+ + + + + − + + + +− = = = + + + +∫ ∫ ∫ ∫
⋯ ⋯

⋯  

 
2 3 41 1 1 1

2 2! 3 3! 4 4! !
1

1x n

n nx

n

e C x x x C xdx x
∞

⋅ ⋅ ⋅ ⋅
=

− = + + + + + = +∫ ∑⋯  

35. ( )
2 31 1

2! 3!
1 21 1 1

2! 3!
1

x x x xe

x x x
dx dx x x dx

+ + + +
= = + + + +∫ ∫ ∫

⋯

⋯  

 
2 31 1 1

2 2! 3 3! !
1

ln ln
x n

nx n

e

n

dx C x x x x C x x
∞

⋅ ⋅ ⋅
=

= + + + + = + +∑∫ ⋯  

36. 31 x+  is binomial with k = 1/2.  

 
( )

(1/2)( 1/ 2) (1/2)( 1/2)( 3/2)1/ 2 2 31
2 2! 3!

1/2 (1/2)( 1/2) (1/2)( 1/2)( 3/2)3 3 3 6 91
2 2! 3!

1 (1 ) 1

1 1 1

x x x x x

x x x x x

− − −

− − −

+ = + = + + + +

+ = + = + + + +

⋯

⋯

 



 ( ) ( )
1/2

3 3 6 9 4 7 101 1 1 1 1 1
2 8 16 8 56 160

1 1x dx x x x dx C x x x x+ = + − + + = + + − + +∫ ∫ ⋯ ⋯  

37. ( ) ( ) ( )
1 1

1
2 4 8 12 5 9 131 1 1 1 1 1

2! 4! 6! 5 2! 9 4! 13 6!
0

0 0

cos 1x dx x x x dx x x x x
⋅ ⋅ ⋅

= − + − + = − + − +∫ ∫ ⋯ ⋯  

 ( ) ( 1)1 1 1
5 2! 9 4! 13 6! (4 1) (2

2

0

)!
0

1

cos 1
n

n n

n

x dx
∞

−

⋅ ⋅ ⋅ + ⋅
=

= − + − + =∑∫ ⋯  

 ( )
1

2 1 1
5 2! 9 4!

0

cos 1 0.9046296x dx
⋅ ⋅

≈ − + =∫  

 The series that gives this integral is alternating, so the maximum error is the first omitted term, in this 

case 1
13 6!

0.0001068
⋅

= . 

38. ( ) ( )
2 2 2

2
2 3 2 3 41 1 1 1 1

2! 3! 2 3! 4!
0

0 0 0

1
x

x

dx
e dx x x x dx x x x x

e

−= = − + − + = − + − +∫ ∫ ∫ ⋯ ⋯  

 
1( 1) 28 16

3! 4! !
1

2

0

2 2
n n

nx
n

dx

e

+
∞

− ⋅

=

= − + − + =∑∫ ⋯  

 

2

8 4
3! 3

0

2 2
x

dx

e
≈ − + =∫  

 The series that gives this integral is alternating, so the maximum error is the first omitted term, in this 

case 16 16 2
4! 24 3

= = . That's a lot of error; we should use more terms in the approximation. 

 Of note, this integral can be evaluated directly, using elementary methods. 

2

2
2

2 0 1

0
0

1
x x

e
e dx e e e

− − −= − = − + = −∫ . From this problem, then, we can conclude that 
1

2

( 1) 2 1
!

1

1
n n

n e
n

+
∞

− ⋅

=

= −∑ . 

39. 
( )2 4 61 1 1 2 2 4 4 6 61 1 1

2! 4! 6! 2! 4! 6!

1 1 1
1 (3 ) (3 ) (3 ) 1 3 3 3cos(3 ) 1

0 0 0

x x x x x xx

x x x
dx dx dx

− + − + − − ⋅ ⋅ + ⋅ ⋅ − ⋅ +− = =∫ ∫ ∫
⋯ ⋯

 

 

( ) ( )2 4 6

22 4 6

1
1

2 4 3 6 5 2 4 63 3 31 1 1
2! 4! 6! 2 2! 4 4

1
cos(3 ) 1

0

! 6 6!
0

0

( 1) 33 3 3
2 2! 4 4! 6 6! (2 ) (2 )!

1

3 3 3

n n

n

x

n

n

x
x x x dx x x xdx −−

⋅ ⋅ ⋅

∞
− ⋅−

⋅ ⋅ ⋅

−

⋅
=

= ⋅ ⋅ + ⋅ ⋅ − ⋅ + = + − +

= + − + =

∫

∑

∫ ⋯ ⋯

⋯

 

 
2 4 6

1

cos(3 ) 1 3 3 3 63
2 2! 4 4! 6 6! 40

0

1.575
x

x
dx

− − −
⋅ ⋅ ⋅

≈ + − = = −∫  

 The series that gives this integral is alternating, so the maximum error is the first omitted term, in this 

case 
83

8 8!
0.02034

⋅
= . 

40. a. We will obtain a series for sin t

t
, and integrate term by term. 

 ( ) ( )

3 5 71 1 1
3! 5! 7!

3 5 71 1 1
3! 5! 7!

2 4 6sin 1 1 1
3! 5! 7!

2 4 6 3 5 7sin 1 1 1 1 1 1
3! 5! 7! 3 3! 5 5! 7 7!

0
0 0

( 1)3 5 7 2 11 1 1
3 3! 5 5! 7 7! (2 1) (2 1)!

0

sin

1

1

n

t t t tt

t t

x x
x

t

t

n

n n

n

t t t t t

t t t

dt t t t dt t t t t

x x x x x

− + − +

⋅ ⋅ ⋅

∞
− +

⋅ ⋅ ⋅ + ⋅ +
=

= − + − +

= = − + − +

= − + − + = − + − +

= − + − + =

∫ ∫

⋯

⋯

⋯

⋯ ⋯

⋯ ∑

 

 b. We simply plug in 1 for x in the series from part (a). 



  

( 1) 2 1

(2 1) (2 1)!
0

( 1) ( 1)2 1

(2 1) (2 1)! (2 1) (2 1)!
0 0

Si( )

Si(1) (1)

n

n n

n

n n

n

n

n n n n

n n

x x
∞

− +

+ ⋅ +
=

∞ ∞
− −+

+ ⋅ + + ⋅ +
= =

=

= =

∑

∑ ∑
 

 c. Since the series for Si(1) is alternating, we need to find when 
6

1 10
n

a
−

+ < . Solving 

61
(2 1) (2 1)!

10
n n

−

+ ⋅ +
<  with a table shows that the desired accuracy is reached as long as n ≥ 4. Since 

the summation starts with n = 0, including terms up to n = 4 means a total of five terms. 

41. a. We will obtain a series for 
2

t
e

−  and integrate term by term. 

 

( ) ( ) ( )

( ) ( )

2

2

2

2 31 1
2! 3!

2 3
2 2 2 2 4 61 1 1 1

2! 3! 2! 3!

2 4 6 3 5 71 1 1 1 1
2! 3! 3 5 2! 7 3!

0
0 0

( 1)3 5 7 2 11 1 1
3 5 2! 7 3! (2 1) !

0

( 1)2 2
(2

0

1

1 1

1

n

n

t

t

x x
x

t

n

n n

n

x

t

n

e t t t

e t t t t t t

e dt t t t dt t t t t

x x x x x

e dt
π π

−

−

⋅ ⋅

∞
− +

⋅ ⋅ + ⋅
=

−−

= + + + +

= + − + − + − + = − + − +

= − + − + = − + − +

= − + − + =

= ⋅

∫ ∫

∑

∫

⋯

⋯ ⋯

⋯ ⋯

⋯

2 1

1) !
0

n

n

n

x
∞

+

+ ⋅
=

∑

 

 b. We cam simply substitute 
2

x  for x in the series for erf(x). 

  

( ) ( )

2

2

2 1

( 1) 2 12 2
(2 1) !

00

/ 2
2 1

( 1) ( 1) 2 12 2 2 1
(2 1) ! (2 1) !2 2 2

0 00

erf( )

erf

n

n n

n

x

t n

n n

n

x
n

t nx x

n n n n

n n

x e dt x

e dt x

π π

π π π +

∞
−− +

+ ⋅
=

∞ ∞+
− −− +

+ ⋅ + ⋅
= =

= = ⋅

= = ⋅ = ⋅ ⋅ ⋅

∑∫

∑ ∑∫

 

 c. ( ) ( )2 1 1 3 5 7

( 1)1 2 1 2 1 1 1 1
(2 1) !2 2 1 0! 2 3 1! 2 5 2! 2 7 3! 2

0

erf 0.6825
n

nn n

n
π π+

∞
−

+ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=

= ⋅ ⋅ ≈ − + − =∑  

  Since this series is alternating, the error is no more than the next omitted term. In this case, that is 

9

2 1

9 4! 2
0.0002309

π ⋅ ⋅
= . 

42. a. This series is geometric with initial term 1 and common ratio 3x. 1
1 3

( )
x

f x
−

= . 

 b. ( ) arctanf x x=  

 c. The odd factorials suggest the sine series. However, the powers don't match the factorials; they 

are each 1 degree too small, suggesting a division by x. Also, we are missing what used to be the 

linear term of the sine series. Putting it all together, we have sin( ) x x

x
f x −= . 

 d. The even factorials suggest the cosine series. The powers of 5 in the numerators suggest that x has 

been replaced by 5x. ( ) cos(5 )f x x= . 

43. a. ( ) ln(1 )f x x= +  

 b. This looks like the sine series, except for the coefficients, which are odd powers of 2. 

( ) sin(2 )f x x= . 

 c. This series is geometric with initial term 8x
2
 and common ratio 

21
2

x− . 
( )

2 2 2

2 22 11
22

8 8 16

1 21
( ) x x x

x xx
f x

− + +−
= = = . 

 d. This is the series for xe  except that it is missing the constant term and the terms alternate. The 

alternation suggests xe− , but 
2 31 1

2! 3!
1

x
e x x x

− = − + − +⋯ . We can fix both the constant term and 

the sign issue in one fell swoop: ( ) 1 xf x e−= − . 



44. a. This would be the cosine series (as given away by the even factorial denominators), except that 

the degree of every term is three more than it should be. 3( ) cos( )f x x x= ⋅ . 

 b. This would be the sine series (as given away by the odd factorial denominators), except that the 

degree of every term is twice what it should be. ( )2
( ) sinf x x= . 

 c. At first glance, this looks like some variation on the exponential series, but the signs are all out of 
whack. If you look at every other term, you will see either the sine series or the cosine series, 

depending on whether you start with the 1 or the x. ( ) cos( ) sin( )f x x x= + . 

 d. Let's break up those grouped terms. 

  ( ) ( ) ( ) ( ) ( )2 4 6 2 4 6 2 4 61 1 1 1 1 1 1 1 1 1
2! 2! 4! 3! 6! 2! 3! 2! 4 6!

1 1 1x x x x x x x x x+ − + + + − + = + + + + + − + − +⋯ ⋯ ⋯  

  The first grouping is the series for 
2

x
e . The second grouping is the series for cos(x), missing the 

constant term. 
2

( ) cos( ) 1xf x e x= + − . 

45. The radius of convergence will be as big as it can be before running into a singularity of the function, 

in this case at 
2
π± . We cannot include 

2
π±  in the interval of convergence, since the function being 

modeled is undefined there. 

 Radius of convergence: 
2
π   Interval of convergence: 

2 2
xπ π− < <  

46. 1
1

( )
x

f x
−

=  is undefined at x = 1. Of the two possible centers, x = -2 is farther from x = 0. Therefore 

the series centered at x = -2 will have the larger radius of convergence (namely R = 3 compared to 

1R =  for the series centered at x = 0). 
47. a. To maximize the radius of convergence, we want the center to be as far as possible from the 

vertical asymptotes at x = 3 and x = 4. Therefore we should center the series at x = 3.5. 

 b. The largest subinterval of [-1, 5] that does not have a vertical asymptote in it is [1, 3], which is 
two units wide. If we center a series in the middle of this interval, at x = 2, then the radius of 

convergence will be 1. This is the largest radius of convergence we can manage for this function 

on [-1, 5]. 

48. 
3 5 71 1 1

3! 5! 7!

2 4 61 1 1
2! 4! 6!

sin
cos 1

tan
x x x xx

x x x x
x

− + − +

− + − +
= =

⋯

⋯
 

3 5 7171 2
3 15 315

2 4 6 3 5 71 1 1 1 1 1
2 24 720 6 120 5040

3 5 71 1 1
2 24 720

3 5 71 1 1
3 30 840

3 5 71 1 1
3 6 72

5 72 4
15 315

5 72 1
15 15

717
315

1

x x x x

x x x x x x x

x x x x

x x x

x x x

x x

x x

x

+ + + +

− + − + − + − +

− + − +

− + −

− + −

−

−

⋯

⋯ ⋯

⋯

⋯

⋯
 

3 5 7171 2
3 15 315

tan( )x x x x x= + + + +⋯  

Because the tangent function has vertical asymptotes at 
2

x π= ± , the interval of convergence of its 

Maclaurin series will be 
2 2

xπ π− < < . Therefore the radius of convergence will be π / 2. 

49. First note that if 
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′ = + +∑ . We have started n at 1 in 

y' only because the summand vanishes when n = 0; there is no reason to have n = 0. Also be careful of 



the chain rule. That is why there is an extra 3 in the numerator of y'. Partially cancelling the factorial 

with the n in the numerator gives 
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indexed this series to be consistent with the series for y'. 

Now we add y' to 3y to see if we really get x. If we do, the given series does satisfy the differential 
equation. 
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(Note the manipulation of 1( 1)n−−  to give ( 1)n− −  in the third line.) The given function does indeed 

solve the differential equation. 
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As in Problem 49, we've done some manipulation of 1( 1)n+−  and some re-indexing to obtain our final 

result. As we can see, though, the function checks out, so it is indeed a solution to the differential 

equation. 

51. I will give two solutions for this one: one less formal and the other more formal. We know that 
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1y x x x′′ = + + + +⋯ . Multiplying the series for y' by x 

gives 
2 4 6 81 1 1

2 8 48
xy x x x x′ = + + + +⋯ . Let's put it all together. 
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So we see that this all checks out. The given function solves the differential equation. 

More formally, since 
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the same is true of y′′  if we do some re-indexing. 
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We must be doing something right; we just produced a common denominator for all three series. 

However, the series for y′′  starts at n = 0 while the others start at n = 1. That's easy to fix. 
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Now we put it all together. 
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Once again we see that the function y does satisfy the given differential equation. 

52. We begin with the informal approach to verifying the solution.  
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So we see that the function checks out; it solves the differential equation. 

Here is a more formal solution: 
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Now the index variable and power are right, but we have the wrong denominator. Let's bring in a 

common denominator in advance of the addition: 
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And so the solution checks; the given function satisfies the differential equation. 
53. We proceed as in Examples 5 and 6, assuming that there is a Maclaurin series solution and then 

solving for the coefficients. To this end, let 2 3 4
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Now we have  
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Equating coefficients of y′′  and xy y′ +  indicates that  



2 0

3 1

4 2

2

2

6 2

12 3

( 1) ( 1) .
n n

c c

c c

c c

n n c n c −

=

=

=

− = −

⋮

 

Of course, the last equality can be simplified to 2n n
nc c −=  or 1

2n nn
c c −= . Now it's time to use our 

initial conditions. Since (0) 0y = , 0c  must be 0. This implies that 2 0c = , 4 0c = , and in general 

2 0
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c =  where k is a non-negative integer. Since (0) 1y′ = , 1c  must be 1. This implies that 1
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c = ⋅ = , and so forth. 

The solution to the initial value problem is 
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y x x x x= + + + +⋯ . 

54. We begin by assuming there is a Maclaurin series solution so that 
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Given this, it follows that 
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In general, 5( 1)
n n

n n c c −− =  for n ≥ 5. Let's use the initial conditions. (0) 1y =  implies that 0 1c = . 

From this it follows that 520 1c =  or 1
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The solution to the initial value problem is 
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55. a. We begin by assuming a Maclaurin series solution such that 
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Rather than tackle the differential equation as presented, let's rewrite it to 2y y xyλ′′ ′+ = . This 

keeps everything positive and allows us to use the trick of equating coefficients. We will need the 

products λy and 2xy'. 
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Combining y" and λy gives 
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where the general term is valid for n ≥ 2. 

Equating like terms between y yλ′′ +  and 2xy' gives 
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and so forth. 
Now we are ready for the initial conditions. Plugging into the series expressions for y and y', we 

see that  0(0) 0 0y c= ⇒ =  while 1(0) 1 1y c′ = ⇒ = . Since 0 0c = , it follows that 2 0c = , 4 0c = , 
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Since 1 1c = , 2 2
3 6 6

1c λ λ− −= ⋅ = . In turn, 
(6 )(2 )1

5 320 120
(6 )c c

λ λλ − −= ⋅ − ⋅ = . 

We conclude that 
(6 )(2 ) (2 )(6 ) (4 2 )3 5 2 12

1 6 120 (2 1)!
1

n n

n

n

y x x x x x
λ λ λ λ λλ

∞
− − − − − − +−

+
=

= + + + = +∑ ⋯
⋯ . (It may take 

some additional exploration to convince you of the general term, but don't worry too much about 
it; we're only asked for three non-zero terms.) 

 b. For y2 we have the same relations between the coefficients, just different initial conditions. For 
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 c. If 4λ = , it will be y2 that terminates; every term in the series with a factor of (4 – λ) will vanish. 
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  ( )32
3 6 3
( ) ( )H x k h x k x x= ⋅ = ⋅ − . We choose k so that the leading coefficient will be 2

3
 = 8, 

requiring us to scale up by 8
2/3

12
−

= − . 

  ( )3 32
3 3
( ) 12 8 12H x x x x x= − − = − . 

 e. 2

2 2 2( ) 4 2 ( ) 8 ( ) 8H x x H x x H x′ ′′= − ⇒ = ⇒ = . In this case, the left side of the Hermite equation 

takes on the form ( )2
8 2 8 4 4 2x x x− ⋅ + − . (Remember that 4λ = .) Simplifying… 

( )2 2 28 2 8 4 4 2 8 16 16 8

0

x x x x x− ⋅ + − = − + −

=
 

  It checks, which is hopefully not a surprise. 

  3 2

3 3 3( ) 8 12 ( ) 24 12 ( ) 48H x x x H x x H x x′ ′′= − ⇒ = − ⇒ = . Noting that 6λ =  for 3 ( )H x , the left 

side of the Hermite equation takes on the form ( ) ( )2 3
48 2 24 12 6 8 12x x x x x− ⋅ − + ⋅ − . 

Simplifying… 



( ) ( )2 3 3 3

3 3

48 2 24 12 6 8 12 48 48 24 48 72

72 72 48 48

0

x x x x x x x x x x

x x x x

− ⋅ − + ⋅ − = − + + −

= − − +

=

 

  This solution also checks out. 

56. We know that 1
2! !

1
nx x

n
e x= + + + + +⋯ ⋯ . Specifically, 

1 1 1 1
2! 3! !

1 1
n

e e= = + + + + + +⋯ ⋯ . All the 

terms in this series for e are positive. Therefore any partial sum of the series will be an underestimate 
of the value of e. Taking the first two terms and grouping the rest as the "tail," we have e = 2 + tail. 

Since the tail must be positive, we have e > 2. 

 To get an upper bound for e, we will compare the series to one that is greater and whose sum we can 

determine. A good candidate is 1

2n∑ . For all n ≥ 4, ! 2nn > . Therefore, for all such n, ( )1 1 1
! 22n

n

n
< = . 

Since ( )1 1
! 2

n

n
<  for all n ≥ 4, it follows that ( )1 1

! 2
4 4

n

n

n n

∞ ∞

= =

<∑ ∑ . (To be totally rigorous, we would need to 

justify this statement a bit more, but it is hopefully plausible enough for our purposes.) However, e is 

not only 1
!

4
n

n

∞

=

∑ ; there are some terms missing. 1 1 1
2! 3! !

4

1 1
n

n

e
∞

=

= + + + +∑ . Adding the missing terms to 

both sides of the inequality above we have ( )1 1 1 1 1 1
2! 3! ! 2! 3! 2

4 4

1 1 1 1
n

n

n n

∞ ∞

= =

+ + + + < + + + +∑ ∑  or 

( )8 81 1
3 ! 3 2

4 4

n

n

n n

e
∞ ∞

= =

= + < +∑ ∑ . Of course, we can actually evaluate the series on the right side of the 

inequality since it is geometric. ( )
4(1/ 2)1 1

2 1 1/2 8
4

n

n

∞

−
=

= =∑ . Therefore 8 8 671
3 8 3 24

e < + = = , or about 2.7916666…. 

This is certainly less than the 4 we were asked to show. We have done better. We have shown that 

2 3e< < . 

57. a. This series is geometric with common ratio 1/2 and initial term 3. The sum is 1
2

3

1
6

−
= . 

 b. This series is the arctangent series (given away by the alternation and the odd, non-factorial 

denominators) with 1 plugged in for x. Its sum is arctan(1) or 
4
π . 

 c. This is series is based on the series for xe  (given away by the factorial denominators). The 

powers of 3 suggest that 3 has been plugged in for x. Indeed, the series sums to 3e . 

 d. If we rewrite the series as 
1 2 3 4(1/2) (1/4) (1/8) (1/16) (1/2) (1/2) (1/2) (1/2)

1 2 3 4 1 2 3 4
− − − − − = − − − − −⋯ ⋯ , things 

become clearer. Now we see that we have increasing powers of 1/2 and that the n
th
 denominator is 

just n. This is the series for ln(1 )x−  with 1/2 plugged in for x. Therefore its sum is 

( )1 1
2 2

ln 1 ln− = . 

58. a. The alternation and odd, factorial denominators suggest the sine series, the first term of which is x. 

The first term of the given series is -5, which means that -5 has been plugged in for x. Subsequent 

powers of -5 in the other terms confirm this. This series sums to sin(-5). 

 b. The denominators are factorials, so this is based on the series for xe . Since the terms alternate, we 

might suspect that -1 has been plugged in for x. But that's not quite right. 
1 1 1

2 6
1 1e

− = − + − +⋯ , or 

1 1 1
2 6

e
− = + +⋯  after canceling the first two ones. The given series has an extra 1, so its value is 

simple 11
e

+ . 

 c. This series is geometric with initial term 216 and common ratio -1/6. Its sum is 
( )
216 1296

71 1/6− −
=  or 

1
7

185 . 



 d. This is the exponential series with ln(4) plugged in for x. Its sum is ln 4 4e = . 

59. a. We apply the ratio test to n

n

r
∑  which is a positive-term series (and the absolute-value version of 

the series n

n

r∑ ). 1

1 1

1 1 1lim lim lim
n n

n

n n
n

r ra n n

a n n rr rn n n

+

+ +

+ +

→∞ →∞ →∞
= ⋅ = ⋅ = . If 1r > , then 1 1

r
< . Therefore n

n

r
∑  

converges by the ratio test when 1r > . This means that n

n

r∑  converges absolutely when 1r > .  

If 1r < , then 1 1
r

> , and we have divergence by the ratio test. If 1r = , the series simplifies to 

n∑  which clearly diverges. We conclude that this series converges iff 1r > . 

 b. 2

1 1
1 (1 )

( ) ( )
x x

f x f x
− −

′= ⇒ = . Then 2(1 )
( ) ( ) x

x
g x x f x

−
′= ⋅ = . 

 c. The Maclaurin series for ( )f x  is 21 nx x x+ + + + +⋯ ⋯ . Term-by-term differentiation gives 
2 1( ) 1 2 3 nf x x x nx −′ = + + + + +⋯ ⋯ . Finally, multiplying through by x gives 

2 3( ) 2 3 ng x x x x nx= + + + + +⋯ ⋯ . 

 d. To find the interval of convergence for ( )g x , we apply the ratio test to the absolute value of the 

general term. 
1

1 ( 1) 1lim lim lim
n

n

n
n

a n x n

na nxn n n
x x

+
+ + +

→∞ →∞ →∞
= = ⋅ = . Therefore this series converges if 1x < . We 

ignore the endpoints since we are not asked to deal with them. (The series diverges at both 

endpoints.) 

 e. We know that the series for ( )g x  converges when 1x < . If r is greater than 1 in magnitude, then 

1
r

 certainly falls within this interval of convergence. Therefore it is meaningful to say that 

( ) ( )1 1

1 1

n

n
n

r r r
n n

g n
∞ ∞

= =

= =∑ ∑ . 

  However, we also have an explicit expression for ( )g x . 2(1 )
( ) x

x
g x

−
= . Therefore ( ) 2

1/1

(1 1/ )

r

r r
g

−
= . 

Cleaning this up, we have ( )
( ) ( )

2

2 2 2 2
1 1

1/1

( 1)1 1
r r

r r r r
r r rr

g
− − − ⋅ 

= ⋅ = =  as desired. 

60. a. 
( )
2 2

1
1 1( ) ( )

x x
x x xxe e

e xe e

x x x
f x f x

− −
− − +′= ⇒ = = . 2

1 1

1
(1) 1e ef − +′ = = . 

 b. 
( )2 31 1 2 31 1

2! 3! 22! 3! 1 1 1
2! 3! ( 1)!

1 1
( ) 1

n

n

x x x x x x
f x x x x

x x
+

+ + + + − + + +
= = = + + + + +

⋯ ⋯
⋯ ⋯ . 

Differentiating gives 
11 2

2! 3! ( 1)!
( )

nn

n
f x x x

−

+
′ = + + + +⋯ ⋯ . 

 c. From the series in part (b), we have 1 2
2! 3! ( 1)! ( 1)!

1

(1) n n

n n

n

f
∞

+ +
=

′ = + + + + =∑⋯ ⋯ . We also found in part 

(a) that (1) 1f ′ = . Therefore 
( 1)!

1

1n

n

n

∞

+
=

=∑ . 

61. a. ( ) ( )
1

1
1 1 0 0

0
0

(1) 1 0 1 1
t t t

f te dt te e e e e e e e= = − = − − − = − + =∫  

 b. 
2 31 1

2! 3!
1

t
e t t t= + + + +⋯  



  

( ) ( )

2 3 41 1
2! 3!

2 3 4 2 3 4 51 1 1 1 1 1
2! 3! 2 0! 3 1! 4 2! 5 3!

0
0 0

2 3 4 51 1 1 1
2 0! 3 1! 4 2! 5 3!

21
( 2) !

0

( )

t

x x
x

t

n

n n

n

te t t t t

te dt t t t t dt t t t t

x x x x

f x x

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

∞
+

+ ⋅
=

= + + + +

= + + + + = + + + +

= + + + +

=

∫ ∫

∑

⋯

⋯ ⋯

⋯

 

 c. From part (b), we have 
21 1

( 2) ! ( 2) !
0 0

(1) (1)
n

n n n n

n n

f
∞ ∞

+

+ ⋅ + ⋅
= =

= ⋅ =∑ ∑ . But from part (a), we have (1) 1f = . 

Therefore 1
( 2) !

0

1
n n

n

∞

+ ⋅
=

=∑ . 

62. A little re-indexing and algebra shows that the series are the same: 

1 1 1
( 1)! ( 2)! ( 2) ( 1) ! ( 2) !

1 0 0 0

n n n

n n n n n n n

n n n n

∞ ∞ ∞ ∞
+ +

+ + + ⋅ + ⋅ + ⋅
= = = =

= = =∑ ∑ ∑ ∑ . 

63. a. ( ) ( ) ( )2 3 4 5 3 6 4 7 2 5 8
1 2 3 2 3 1 2 3x x x x x x x x x x x x x+ + + + + + = + + + + + + + + + + +⋯ ⋯ ⋯ ⋯  

 (As long as 1x < , these three geometric series are absolutely convergent. Therefore, we can 

reorder the summation without fear of changing its sum.) 

 The three geometric series each have common ratio x
3
; they differ only in their initial term. 

 3

3 6 1

1
1

x
x x

−
+ + + =⋯  

 ( ) 3 3

4 7 2

1 1
2 2 x x

x x
x x x

− −
+ + + = ⋅ =⋯  

 ( ) 2 2

3 3

2 5 8 3

1 1
3 3 x x

x x
x x x

− −
+ + + = ⋅ =⋯ . 

 The sum of the series is therefore 
2 2

3 3 3 3

2 3 1 2 31

1 1 1 1
( ) x x x x

x x x x
f x + +

− − − −
= + + = . 

 b. Each of the individual geometric series has an interval of convergence of -1 < x < 1. By the hint, 
it follows that the sum has this same interval of convergence. The radius of convergence of this 

series is 1. 

 c. ( )
2

3

1 2(1/2) 3(1/ 2)3 32 1 2 1 22
2 4 8 16 32 2 71 (1/2)

1 f
+ +

−
+ + + + + + = = =⋯  

  ( )
2

3

1 2( 1/3) 3( 1/3)3 3 92 1 2 1
3 9 27 81 243 3 141 ( 1/3)

1 f
+ − + −−

− −
− + − + − + = = =⋯  

 d. This sum is much like the original sum, except there will be a total of m interwoven series, each 

with a common ratio of mx . In analogy to part (a), the sum will be 
2 12 31

1 1 1 1

m

m m m m

x x mx

x x x x

−

− − − −
+ + + +⋯ , or 

2 11 2 3

1

m

m

x x mx

x

−+ + + +

−

⋯ . Since each geometric series still converges on -1 < x < 1, that holds for the 

"whole" series as well. The radius of convergence of the whole series is 1. 

 e. The only change that is made here is in the coefficients, but these coefficients will still repeat 

cyclically. What used to be a 1 is now 0c , what used to be a 2 is now 1c , etc. The sum of the 

series is now 
2 1

0 1 2 1

1

m
m

m

c c x c x c x

x

−
−+ + + +

−

⋯
. 

 f. The coefficients here are cycling with a period of 4, and they cycle through the numbers 2, 3, 5, 

and 8. In series form our function is 2 3 4 5 6 7( ) 2 3 5 8 2 3 5 8f x x x x x x x x= + + + + + + + +⋯ . 

Explicitly, the function is 
2 3

4

2 3 5 8

1
( ) x x x

x
f x + + +

−
= . The powers of 5 in the denominator arise from 



plugging in 1/5 to the series. We can therefore evaluate this sum as 

( )
( ) ( ) ( )

( )

2 3
1 1 1
5 5 51

5 4
1
5

2 3 5 8 895
2.8685897

3121
f

+ + +
= = =

−
… . 

64. 1 1 1
1 ( 1) 1 ( 1)

( )
x x x

f x −+ − − −
= = =  is a geometric series with common ratio ( 1)x− −  and initial term 1. 

Therefore ( )
0 0

( ) ( 1) ( 1) ( 1)
n n n

n n

f x x x
∞ ∞

= =

= − − = − −∑ ∑ . The series converges iff ( 1) ( 1) 1x− ⋅ − < . 

( 1) ( 1) 1 1 1 1 0 2x x x− ⋅ − < ⇒ − < − < ⇒ < <  

 The interval of convergence of this series is 0 < x < 2. 

65. 4 ( 4 )
4 4

1 1 1 1 1 1
4 ( 4) 4 41 1

( ) x xx x
f x − − −+ − + −

= = = ⋅ = ⋅ . This is a geometric series with initial term 1/4 and common 

ratio 
( 4)

4

x− −
. Therefore ( )( 4)1

4 4
0

( )
n

x

n

f x
∞

− −

=

= ⋅∑ . 

 Graph some partial sums of the series from Problems 64 and 65 along with 1( )
x

f x =  to see what's 

going on here. 

66. a. 1 1 1 1
1 1 ( 2) 1 ( 2) 1 ( 2)

( ) 1
x x x x

f x −
−− − − − + − − −

= = = − ⋅ =  is geometric with initial term -1 and common ratio 

( 2)x− − . It can be expanded as a series as ( ) 1

0 0

1 ( 2) ( 1) ( 2)
n n n

n n

x x
∞ ∞

+

= =

− ⋅ − − = − −∑ ∑ . 

 b. 2
3

1 1 1 1
1 3 ( 2) 3 1

( ) xx x
f x +− − + −

= = = ⋅  is geometric with initial term 1/3 and common ratio 2
3

x+ . It can be 

expanded as ( )21
3 3

0

n
x

n

∞
+

=

⋅∑ . 

 c. 5
4

1 1 1 1
1 4 ( 5) 4 1 xx x −

−
− − − − +

= = ⋅  is geometric with initial term -1/4 and common ratio 
( 5)

4

x− −
. It can be 

expanded as ( ) ( )( 5) 1 51 1
4 4 4 4

0 0

( 1)
n nx n x

n n

∞ ∞
− − + −−

= =

⋅ = ⋅ − ⋅∑ ∑ . 

 d. 
1

1 1 1 1
1 (1 ) ( ) 1 1 x k

k
x k x k k −

−
− − − − − −

= = ⋅  is geometric with initial term 1
1 k−

 and common ratio 
1
x k

k

−
−

. It can be 

expanded as ( )1
1 1

0

n
x k

k k

n

∞
−

− −
=

⋅∑ . 

67. 1 1
3 1 ( 2)

( )
x x

f x
− − −

= =  is geometric with initial term 1 and common ratio (x – 2). It can be expanded as 

0

( 2)
n

n

x
∞

=

−∑ . 

68. a. It is clear that ( )f x  is differentiable for all x other than π± ; the functions cos(x) and -1 are 

infinitely differentiable, so we only have to worry about the x-values where the two functions 

"meet up." 

  
( ) ( )

( ) lim
f x f

x
x

f
π

ππ
π −

−
→

′ = , provided this limit exists. As x π +→ , ( ) 1f x = − . So we have 

01 1lim lim 0
x x

x x
π π

π π+ +

−− −
− −

→ →
= = . As x π −→ , ( ) cos( )f x x= . The limit is now 

cos( ) 1 cos 1 sin
1

lim lim lim 0
x x x

x x
x x x

π ππ π π

−− +
− −

→ → →
= = = . Since the two one-sided limits agree, ( )f π′  is defined and is 

zero. 

  The computations work out to be identical for ( )f π′ − . It is also defined and equal to zero. 

  We conclude that f  is differentiable for all x. 



 b. Since we are looking at x = 0, we use cos(x) as the rule for ( )f x . If we do this, we will simply 

generate our old friend 
( 1) 2

(2 )!
0

n
n

n

n

x
∞

−

=

∑  as the Maclaurin series for ( )f x . 

 c. We have already seen (Problem 1) that the series in part (b) converges. Furthermore, we showed 
in Problem 2 that this series converges to the cosine function for all x. That's great on the interval 

xπ π− < < . However, for x π> , ( )f x  is not the cosine function. Therefore this series cannot 

converge to ( )f x  for all x. 

 d. While we showed in part (a) that f is differentiable for all x, f is only once-differentiable for all x. 

All higher-order derivatives of f are undefined at x π= ± . We should only expect the Macluarin 

series to converge to ( )f x  in the interval xπ π− < < , which in fact it does. 

69. a. Before diving into a detailed argument, it might be helpful to compute a few derivatives to see—

at least roughly—what is going on. Our function is  
21/
, 0

( )
0, 0.

x
e x

f x
x

− ≠
= 

=
 

 Basic differentiation rules show that 
2

3

1/2( )
x

x
f x e

−′ = ⋅  for 0x ≠ . To determine (0)f ′ , we use the 

definition of the derivative. 
2

2

1/

1/0 0 0

( ) (0) 1 /
(0) lim lim lim

0

x

xx x x

f x f e x
f

x x e

−

→ → →

−
′ = = =

−
 

We can use l'Hospital's rule here, but it will make sense for what's coming down the road to do 

something different. We introduce a new variable u so that 1
x

u = . As 0x → , u → ±∞ . (The ± 

depends on whether x approaches 0 from the left or the right. Ultimately this will only effect 

whether our limits approach 0 from above or below, so it's not that big a deal.) Under this change 

of variables, our limit becomes 
2

lim
uu

u

e→±∞
. 

2
lim 0

uu

u

e→±∞
= . As claimed above, it should be clear that 

this limit is zero regardless of whether u → ∞  or u → −∞ ; the exponential growth will dominate 

the polynomial growth (in this case, linear growth) in both directions. In any event, we have just 

proved that (0) 0f ′ = . This means that  

21/

3

2
, 0

( )

0, 0.

xe x
f x x

x

−
⋅ ≠

′ = 
 =

 

 What about ( )f x′′ ? For 0x ≠ , ordinary differentiation rules show that ( )
2

6 4

1/ 64( )
x

x x
f x e

−′′ = − . 

For x = 0, we again need a limit. 
2 2

3

1/ 2 1/

40 0 0

0( ) (0) 2
(0) lim lim lim

0

x x

x

x x x

ef x f e
f

x x x

− −

→ → →

⋅ −′ ′−
′′ = = =

−
 

We use our same trick as in the last limit. 
2

2 2

1/ 4 4

4 1/0 0

2 2 / 2
(0) lim lim lim 0

x

x ux x u

e x u
f

x e e

−

→ → →±∞
′′ = = = =  

We now have 

( )
2

6 4

1/ 64 , 0
( )

0, 0.

x

x x
e x

f x
x

− − ≠
′′ = 

=
 

 I'll give you one more derivative for free. 



( )
2

9 7 5

1/ 8 36 24 , 0
( )

0, 0

x

x x x
e x

f x
x

− ⋅ − + ≠
′′′ = 

=
 

 At this point, you may be suitably convinced that ( ) (0) 0kf =  for all non-negative integers k. 

One can continue to take derivatives like this ad nauseum. While the forms of the derivatives will 
change (getting uglier and uglier), the basic process is the same; only the details differ. 

Or we can give a more rigorous proof. I have seen a few proofs for the fact that ( ) (0) 0kf = , but 

none is especially easy. The argument that follows is based on the approach in Michael Spivak's 
text Calculus. Before beginning, let's see if we can take some lessons from what we have done so 

far. First, based on the limit computations we have done, it seems that it will be useful to claim 

that 
21/

0
lim 0

x

m

e

xx

−

→
=  for all non-negative integers m. Second, it appears that the k

th
 derivative of f, for 

0x ≠ , is given by ( )
2( ) 1/( ) a sum of inverse power functionsk xf x e−= ⋅ . If you are particularly 

observant, you might have observed that the highest-degree of the inverse power functions 

appeared to be 3k. In other words, it seems that for 0x ≠  

2
3

( ) 1/

1

( )
k

k x i

i
i

a
f x e

x

−

=

= ⋅∑  

for some set of numbers ai. 

 Our strategy will be to prove the first thing—the statement about the limit—as a lemma. Then 

we will prove the general form of ( ) ( )kf x  for non-zero x by induction. Finally, we will prove that 
( ) (0) 0kf =  by induction; the proof will rely on both of the previous steps. Here we go. 

 Lemma: 

21/

0
lim 0

x

kx

e

x

−

→
=  for any non-negative integer k. 

 Proof of lemma: 

2

2 2

1/

1/0 0

1/
lim lim lim

x k k

k x ux x u

e x u

x e e

−

→ → →±∞
= = , where 1/u x= . Since the exponential 

denominator will dominate the polynomial numerator, no matter how large k is, this limit is 0 as u 

goes both to +∞ and -∞. We conclude that 

21/

0
lim 0

x

kx

e

x

−

→
= . 

 Next we will prove by induction that when x is not zero, 
2

3
( ) 1/

1

( )
k

k x i

i
i

a
f x e

x

−

=

= ⋅∑  for some set 

of numbers ai. For the entirety of this inductive argument, it will be assumed that 0x ≠ . 

The base case will be for k = 1. As we saw above, 
2

3

1/ 2( )
x

x
f x e

−′ = ⋅ . This is of the desired form. 

Notice that 1 2 0a a= =  and 3 2a = . This verifies the base case. 

For the inductive step, we will assume that 
2

3
( ) 1/

1

( )
k

k x i

i
i

a
f x e

x

−

=

= ⋅∑  for some set of numbers ai. We 

will show that 
2

3 3
( 1) 1/

1

( )
k

k x i

i
i

b
f x e

x

+
+ −

=

= ⋅∑  for some other set of numbers bi.  

If 
2

3
( ) 1/

1

( )
k

k x i

i
i

a
f x e

x

−

=

= ⋅∑ , then differentiation gives the following. 



2 2

2

2

2

3 3
( 1) 1/ 1/

3 1
1 1

3 3
1/

3 1
1 1

3 3
1/
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Notice that since the summation runs to i = 3k, the denominators in first fraction run to 3k + 3. By 

taking this into account and regrouping the fractions with some unspecified numerators bi, we 

arrive at 
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∑  for 0x ≠  as desired. This completes the inductive proof. 

 We are finally in a position to prove what we are really after: ( ) (0) 0kf =  for all non-negative 

integers k. We will again proceed by induction on k. The base case is k = 0. By definition, 
(0) (0) (0) 0f f= = . If you find the base case trivial, we have also already verified that 
(1) (0) (0) 0f f ′= = . 

For the inductive step, we will assume that ( ) (0) 0kf =  and show that ( 1) (0) 0kf + = . 

By definition, 
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. The second term in the numerator is zero by the 

inductive hypothesis. The first term is, as we have just proved, 
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The immense simplification to the summation in the penultimate line is due to the lemma. 

This completes the proof! 

 b. Since ( ) (0) 0ng =  for all n, the Maclaurin series for g is simply the zero function: ( ) 0M x = . 

 c. ( )g x  is itself equal to 0 only at x = 0. For all other x, ( )g x  is positive. Therefore the Maclaurin 

series for g does not equal the values of the function anywhere other than x = 0. There is no 

interval on which the series converges to ( )g x . 

70. a. The Maclaurin series is centered at x = 0, and the break in the domain of h is at x = 2, two units 

away. We would initially expect the radius of convergence for the Maclaurin series to be 2. 



 b. At x = 0, ( ) 2h x x= +  (factor and cancel). Therefore the Maclaurin series for ( )h x  is simply 

2 x+ . This trivially converges for all x (even x = 2). 

  This example shows that a removable discontinuity is not what is sometimes called an "essential 

singularity" of a function. Essential singularities always limit the radius of convergence of a 
power series for a function while removable discontinuities do not. 

71. a. While (0)k  is undefined, sin

0
lim 1x

x
k→

= . Therefore the discontinuity at x = 0 is removable. 

 b. 
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 c. ( )k x  is not defined at x = 0 and is therefore certainly not differentiable at x = 0. By definition, a 

Maclaurin series is for a function that is infinitely differentiable at x = 0. 
 d. Below are the graphs of k and (in green) the fourth-degree partial sum from part (b). As you see, 

the polynomial does seem to match the graph of k, even near the removable discontinuity at x = 0. 
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= ⋅ = ⋅ = = <  for all x. This power series 

converges for all x, and indeed matches k(x) perfectly everywhere except at x = 0… the center of 

the series. 
 

 


