G7-M3-Lesson 1: Generating Equivalent Expressions

1. Write an equivalent expression by combining like terms. Verify the equivalence of your expression and the given expression by evaluating each for the given value: \(m = -3 \).

\[
4m + 7 + m - 9 \\
4m + 1m + 7 - 9 \\
5m - 2
\]

I can rearrange the terms so that I have like terms together. I can also place a 1 in front of the \(m \) to make it easier to add \(4m + m \).

Check:
\[
4(-3) + 7 + (-3) - 9 \\
-12 + 7 + (-3) + (-9) \\
-17
\]
\[
5(-3) - 2 \\
-15 + (-2) \\
-17
\]

The expressions \(4m + 7 + m - 9 \) and \(5m - 2 \) are equivalent.

2. Use any order and any grouping to write an equivalent expression by combining like terms. Then, verify the equivalence of your expression to the given expression by evaluating for the value(s) given.

\[
9(2j) + 6(-7k) + 6(-j); \text{ for } j = \frac{1}{2}, k = \frac{1}{3}
\]

\[
9(2j) + 6(-7k) + 6(-j) \\
(9)(2)(j) + (6)(-7)(k) + (6)(-1)(j) \\
18j + (-42k) + (-6j) \\
18j + (-6j) + (-42k) \\
12j - 42k
\]

I can multiply in any order, which means I can multiply the 9 and 2 together first for the term \(9(2j) \).
Check:
\[9(2j) + 6(-7k) + 6(-j) \]
\[9 \left(2 \times \frac{1}{2} \right) + 6 \left(-7 \times \frac{1}{3} \right) + 6 \left(-\frac{1}{2} \right) \]
\[9(1) + 6 \left(-\frac{7}{3} \right) + (-3) \]
\[9 + \left(-\frac{42}{3} \right) + (-3) \]
\[9 + (-14) + (-3) \]
\[-8 \]

\[12j - 42k \]
\[12 \left(\frac{1}{2} \right) + (-42) \left(\frac{1}{3} \right) \]
\[6 + (-14) \]
\[-8 \]

Both expressions are equivalent.

3. Meredith, Jodi, and Clive were finding the sum of \((5x + 8)\) and \(-3x\). Meredith wrote the expression \(2x + 8\), Jodi wrote \(8x + 2\), and Clive wrote \(8 + 2x\). Which person(s) was correct and why?

Let \(x = 2\)

\((5x + 8) + (-3x) \)
\[5(2) + 8 + (-3(2)) \]
\[10 + 8 + (-6) \]
\[12 \]

Meredith

\(2x + 8 \)
\(2(2) + 8 \)
\(4 + 8 \)
\(12 \)
Jodi

\[8x + 2\]
\[8(2) + 2\]
\[16 + 2\]
\[18\]

Clive

\[8 + 2x\]
\[8 + 2(2)\]
\[8 + 4\]
\[12\]

Meredith and Clive are correct. Their expressions are the same, just in different orders. Jodi’s expression is incorrect.

Jodi’s expression is the only one that did not result in 12 when I evaluated each expression.
G7-M3-Lesson 2: Generating Equivalent Expressions

1. Write each expression in standard form. Verify that your expression is equivalent to the one given by evaluating both expressions for the given value of the variable.

 a. \(5x + (4x - 9); x = 3\)

 \[
 5x + 4x + (-9) \\
 9x + (-9) \\
 9x - 9
 \]

 Check:

 \[
 5x + (4x - 9) \\
 5(3) + (4(3) - 9) \\
 15 + (12 - 9) \\
 15 + 3 \\
 18
 \]

 Both expressions are equivalent.

 b. \(7x - (4 - 2x); x = -5\)

 \[
 7x + \left(-\left(4 + (-2x) \right) \right) \\
 7x + (-4) + 2x \\
 7x + 2x - 4 \\
 9x - 4
 \]

 Check:

 \[
 7x - (4 - 2x) \\
 7(-5) - (4 - 2(-5)) \\
 -35 - (4 + 10) \\
 -35 - (14) \\
 -35 + (-14) \\
 -49
 \]

 These expressions are equivalent.
c. \((11g + 7h - 8) - (3g - 9h + 6)\); \(g = -3\) and \(h = 4\)

\[
\begin{align*}
(11g + 7h - 8) + (-3g + (-9h) + 6) \\
(11g + 7h - 8) + (-3g + 9h - 6) \\
11g + (-3g) + 7h + 9h + (-8) + (-6) \\
8g + 16h + (-14) \\
8g + 16h - 14
\end{align*}
\]

Even though there are two variables, I can still write the expression in standard form by combining like terms.

This expression is in standard form because none of the terms are like terms.

I need to be careful here and use \(-3\) for \(g\) and \(4\) for \(h\). If I put the numbers in the wrong spots, my solution will be incorrect.

Check:

\[
\begin{align*}
(11g + 7h - 8) - (3g - 9h + 6) \\
(11(-3) + 7(4) + (-8)) - (3(-3) + (-9(4)) + 6) \\
(-33 + 28 + (-8)) - (-9 + (-36) + 6) \\
(-5 + (-8)) - (-45 + 6) \\
-13 - (-39) \\
-13 + 39 \\
26
\end{align*}
\]

The expressions are equivalent.

\[
\begin{align*}
8g + 16h - 14 \\
8(-3) + 16(4) + (-14) \\
-24 + 64 + (-14) \\
40 + (-14) \\
26
\end{align*}
\]

I can use the same properties when I am verifying that the expressions are equivalent as I did when I was simplifying.
d. \(-3(8v) + 2y(15)\); \(v = \frac{1}{4}\); \(y = \frac{2}{3}\)

\[
\begin{align*}
(-3)(8)v + 2(15)y &= -24v + 30y \\
\text{Check:} &
\end{align*}
\]

\[
\begin{align*}
-3(8v) + 2y(15) &= -24v + 30y \\
-3\left(8\left(\frac{1}{4}\right)\right) + 2\left(\frac{2}{3}\right)(15) &= -24\left(\frac{1}{4}\right) + 30\left(\frac{2}{3}\right) \\
-3(2) + 2(10) &= -6 + 20 \\
-6 + 20 &= 14 \\
\end{align*}
\]

The expressions are equivalent.

e. \(32xy ÷ 8y; x = -\frac{1}{2}; y = 3\)

\[
\begin{align*}
32xy ÷ 8y &= \frac{32xy}{8y} \\
&= \frac{32}{8} \cdot \frac{x}{1} \cdot \frac{y}{y} \\
&= 4x \\
\text{Check:} &
\end{align*}
\]

\[
\begin{align*}
32xy ÷ 8y &= 4x \\
32\left(-\frac{1}{2}\right)(3) ÷ 8(3) &= 4\left(-\frac{1}{2}\right) \\
-48 ÷ 24 &= -2 \\
\end{align*}
\]

The expressions are equivalent.
2. Doug and Romel are placing apples in baskets to sell at the farm stand. They are putting x apples in each basket. When they are finished, Doug has 23 full baskets and has 7 extra apples, and Romel has 19 full baskets and has 3 extra apples. Write an expression in standard form that represents the number of apples the boys started with. Explain what your expression means.

I can represent the number of apples Doug had with the expression $23x + 7$ because he put x apples in 23 baskets.

For Romel, I will use $19x + 3$ because he filled 19 baskets with x apples each. Now I need to add together the number of apples each boy had.

\[
23x + 7 + 19x + 3 = 42x + 10
\]

This means that altogether they have 42 baskets with x apples in each, plus another 10 leftover apples.

3. The area of the pictured rectangle below is $36h \text{ ft}^2$. Its width is $4h$ ft. Find the height of the rectangle, and name any properties used with the appropriate step.

I was given the area and the width, so I need to divide to find the height.

\[
36h \div 4h = \frac{36h}{4h} = \frac{36}{4} \cdot \frac{h}{h} = 9 \cdot 1 = 9
\]

The height of the rectangle is 9 feet.

I need to name the properties that I used with each step. I remember doing this in Lessons 8, 9, and 16 of Module 2 and can reference these lessons for some examples of how I did this before.
G7-M3-Lesson 3: Writing Products as Sums and Sums as Products

1.

a. Write two equivalent expressions that represent the rectangular array below.

\[5(7m + 2) = 35m + 10 \]

I know that area of a rectangle is length times width. So I can write an expression showing the length, \((7m + 2)\), times the width, 5.

b. Verify informally that the two expressions are equivalent using substitution.

\[
\begin{align*}
5(7m + 2) & = 35m + 10 \\
5(7(2) + 2) & = 35(2) + 10 \\
5(14 + 2) & = 70 + 10 \\
5(16) & = 80 \\
80 & = 80
\end{align*}
\]

To verify that these two expressions are equivalent, I can pick any value I want for \(m\) and then substitute it into both expressions to make sure they both give me the same value, just like I did in Lesson 2.

c. Use a rectangular array to write the product \(3(2h + 6g + 4k)\) in standard form.

\[3(2h + 6g + 4k) \]

I draw an array where 3 is the width, and the length is \(2h + 6g + 4k\).

\[6h + 18g + 12k \]

The expression in standard form is \(6h + 18g + 12k\).
2. Use the distributive property to write the products in standard form.

 a. \((3m + 5n - 6p)4\)

 This problem is written a little differently than the others. It is still asking me to distribute the 4 to all terms inside the parentheses.

 \[4(3m + 5n - 6p)\]

 \[4(3m) + 4(5n) + 4(-6p)\]

 \[12m + 20n - 24p\]

 I can rewrite the problem with the 4 in the front if that makes it easier for me to simplify.

 b. \((64h + 40g) ÷ 8\)

 I can rewrite the division as multiplication by the reciprocal.

 \[\frac{1}{8}(64h + 40g)\]

 \[\frac{1}{8}(64h) + \frac{1}{8}(40g)\]

 \[\frac{64}{8}h + \frac{40}{8}g\]

 \[8h + 5g\]

 c. \(7(4x - 1) + 3(5x + 9)\)

 I need to use the distributive property twice in this problem.

 \[7(4x) + 7(-1) + 3(5x) + 3(9)\]

 \[28x + (-7) + 15x + 27\]

 \[28x + 15x + 27 + (-7)\]

 \[43x + 20\]

 I combine like terms after applying the distributive property.
3. You and your friend are in charge of buying supplies for the next school dance. Each package of balloons costs $2, and each string of lights costs $8. Write an equation that represents the total amount spent, \(S \), if \(b \) represents the number of packages of balloons purchased and \(l \) represents the number of strings of lights purchased. Explain the equation in words.

\[
S = 2b + 8l \quad \text{or} \quad S = 2(b + 4l)
\]

I notice that the terms in the first equation have a common factor, which means I can write this equation a second way, by dividing out the common factor from each term and writing it outside the parentheses.

The total amount spent can be determined by multiplying the number of packages of balloons purchased by two and then adding that to the product of the number of strings of lights and eight.

The total amount spent can also be determined by adding the number of packages of balloons purchased to four times the number of strings of lights purchased and then multiplying the sum by two.
G7-M3-Lesson 4: Writing Products as Sums and Sums as Products

1. Write each expression as the product of two factors.
 a. \(k \cdot 5 + m \cdot 5\)
 \[5(k + m)\]
 I see that both of the addends have a common factor of 5. I can figure out what will still be inside of the parentheses by dividing both terms by 5.
 b. \((d + e) + (d + e) + (d + e) + (d + e)\)
 \[4(d + e)\]
 I know that repeated addition can be written as multiplication.
 c. \(4h + (8 + h) + 3 \cdot 4\)
 \[4h + 8 + h + 12\]
 \[5h + 20\]
 \[5(h + 4)\]
 I must simplify this expression before I can try to write it as the product of two factors.

2. Write each expression in standard form.
 a. \(-8(7y - 3z + 5)\)
 \[-8(7y) + (-8)(-3z) + (-8)(5)\]
 \[-56y + 24z - 40\]
 To be in standard form, I need to rewrite this expression without the parentheses. I can distribute the \(-8\) to all terms inside.
 b. \(4 - 2(-8h - 3)\)
 \[4 + (-2)(-8h) + (-2)(-3)\]
 \[4 + 16h + 6\]
 \[10 + 16h\]
 I need to follow the correct order of operations, which means I need to distribute the \(-2\) before I subtract.
3. Use the following rectangular array to answer the questions below.

The height is the greatest common factor of all three products. I determine the greatest common factor and then divide the products by the greatest common factor to determine the lengths.

<table>
<thead>
<tr>
<th></th>
<th>2j</th>
<th>7k</th>
<th>10m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10j</td>
<td>35k</td>
<td>50m</td>
<td></td>
</tr>
</tbody>
</table>

a. Fill in the missing information.

b. Write the sum represented in the rectangular array.

\[10j + 35k + 50m \]

I can add the area of each section of the array to write the sum.

c. Use the missing information from part (a) to write the sum from part (b) as a product of two factors.

\[5(2j) + 5(7k) + 5(10m) \]

\[5(2j + 7k + 10m) \]

I need to show that 5 is being multiplied by each length without having to write “times 5” three times.

4. Combine like terms to write each expression in standard form.

\[(-m - n) - (m - n) \]

I know I can rewrite all of the subtraction as adding the opposite.

\[-m + (-n) + (-m - n) \]

\[-m + (-n) + (-m) + n \]

\[-m + (-m) + (-n) + n \]

\[-2m \]

In the end, I have to add opposites.

\[(-n) + n = 0 \]
5. Kathy is a professional dog walker. She must walk the dogs 6 days a week. During each day of walking, she drinks 1 bottle of tea and 3 bottles of water. Let \(t \) represent the ounces of tea she drinks and \(w \) represent the ounces of water she drinks from each bottle of water. Write two different expressions that represent the total number of ounces Kathy drank in one week while walking the dogs. Explain how each expression describes the situation in a different way.

\[6(t + 3w) \]

In one day, Kathy will drink \(t \) ounces of tea and \(w + w + w \) or \(3w \) ounces of water from the three water bottles. That is \(t + 3w \) ounces in one day.

Kathy drinks tea and water during walks on six different days, so the total ounces is six times the quantity of the water and tea that Kathy drank each day.

\[6(t) + 6(3w) \]
\[6t + 18w \]

There are 6 bottles of tea and 18 bottles of water total. The total amount that Kathy drank will be six times the ounces in one bottle of tea plus 18 times the ounces in one bottle of water.
G7-M3-Lesson 5: Using the Identity and Inverse to Write Equivalent Expressions

1. Fill in the missing parts.

 The product of $\frac{1}{3}g + 4$ and the multiplicative inverse of $\frac{1}{3}$

 The first part has been set up for me, and it shows that 3 is the multiplicative inverse of $\frac{1}{3}$.

 \[
 \left(\frac{1}{3}g + 4\right)(3) = \frac{1}{3}g(3) + 4(3)
 \]

 $1g + 12$

 $g + 12$

 I see that the column on the left shows the steps, and the column on the right shows the properties that describe the steps.

 I can rewrite subtraction as adding the opposite so that all terms are being added.

 Here, I can rewrite the expression without the 1 because g and $1g$ are equivalent expressions.

 Multiplicative inverse; multiplication

 Multiplicative identity property of one

2. Write the sum, and then rewrite the expression in standard form by removing parentheses and collecting like terms.

 a. 13 and $4w - 13$

 \[
 13 + (4w - 13) = 13 + 4w + (-13)
 \]

 \[
 13 + (-13) + 4w
 \]

 $4w$

 I can rewrite subtraction as adding the opposite so that all terms are being added.

 I use the additive inverse property, showing that a number and its inverse have a sum of 0.

 b. The opposite of $5m$ and $9 + 5m$

 \[
 -5m + (9 + 5m) = -5m + 5m + 9
 \]

 9

 Because this question says “the opposite of $5m,$” I use the opposite sign, making the term $-5m$.
c. \[7y \text{ and the opposite of } (3 - 8y)\]
\[7y + (-3 + (-8y))\]
\[7y + (-3) + (8y)\]
\[7y + 8y - 3\]
\[15y - 3\]

I remember that the opposite of a sum is the same as the sum of its opposites.

3. Write the product, and then rewrite the expression in standard form by removing parentheses and collecting like terms.

The multiplicative inverse of \(-8\) and \(24g - 8\)

\[-\frac{1}{8}(24g - 8)\]
\[-\frac{1}{8}(24g + (-8))\]
\[-\frac{1}{8}(24g) + \left(-\frac{1}{8} \right)(-8)\]
\[-3g + 1\]

When I multiply multiplicative inverses, I get 1.

4. Write the expression in standard form.

\[\frac{5}{8}(7x + 4) + 2\]

I only distribute the \(\frac{5}{8}\) to the terms inside the parentheses.

I can rewrite the constant terms so they have common denominators in order to add like terms.
G7-M3-Lesson 6: Collecting Rational Number Like Terms

1. Write the indicated expression.
 a. \(\frac{2}{5} k\) inches in yards
 - I know that there are 36 inches in a yard. That means that 1 inch is \(\frac{1}{36}\) of a yard.
 - Multiplication is commutative, which means I can multiply in any order and still get the same answer.
 - \(\left(\frac{2}{5}\right) \left(\frac{1}{36}\right) k\)
 - \(\frac{2}{180} k\)
 - \(\frac{1}{90} k\)
 - \(\frac{2}{5} k\) inches is equal to \(\frac{1}{90} k\) yards.

 b. The average speed of a bike rider that travels \(3m\) miles in \(\frac{5}{8}\) hour
 - The complex fraction is really showing two values that are being divided.
 - \(R = \frac{D}{T}\)
 - \(R = \frac{3m}{\frac{5}{8}}\)
 - \(R = \frac{3m}{1} ÷ \frac{5}{8}\)
 - \(R = \frac{3m}{1} × \frac{8}{5}\)
 - \(R = \frac{24m}{5}\)
 - The average speed of the bike rider is \(\frac{24m}{5}\) miles per hour.
2. Rewrite the expression by collecting like terms.

a. \(\frac{b}{5} - \frac{3b}{4} + 2 \)

 Before I can collect like terms, I need to get common denominators.

 \[\frac{4b}{20} - \frac{15b}{20} + 2 \]

 \[\frac{4b}{20} + \left(-\frac{15b}{20} \right) + 2 \]

 \[-\frac{11b}{20} + 2 \]

 I must collect like terms by combining the terms with the same variable part. To do this, I need to find common denominators for each set of like terms.

b. \(\frac{2}{3}k - \frac{k}{6} - \frac{4}{5}k + \frac{6}{5}m + 3 \frac{1}{10}m \)

Before I can collect like terms, I must apply the distributive property.

\[\frac{4}{6}k - \frac{6}{6}k - \frac{5}{5}k + \frac{4}{5} \frac{6}{10}m + 3 \frac{1}{10}m \]

\[-\frac{7}{6}k + \frac{25}{10}m + \frac{4}{5} \]

I can apply the commutative property to change the order so that the like terms are together.

c. \(\frac{2}{3}(g + 5) - \frac{1}{4}(8g + 1) \)

Before I can collect like terms, I need to apply the distributive property.

\[\frac{2}{3}(g) + \frac{2}{3}(5) + \left(-\frac{1}{4} \right)(8g) + \left(-\frac{1}{4} \right)(1) \]

\[\frac{2}{3}g + \frac{10}{3} + (-2g) + (-\frac{1}{4}) \]

\[\frac{2}{3}g + (-2g) + \frac{10}{3} + (-\frac{1}{4}) \]

\[\frac{2}{3}g + (-2g) + \frac{40}{12} + (-\frac{3}{12}) \]

\[-\frac{4}{3}g + \frac{37}{12} \]
d. \[
\frac{5y}{3} + \frac{2y + 1}{4} - \frac{y - 7}{2}
\]

I remember that the opposite of a sum is the same as the sum of its opposites.

\[
\frac{5y}{3} + \frac{2y + 1}{4} + \left(-\frac{y - 7}{2} \right)
\]

Getting common denominators will make it easier to collect the like terms in the numerator.

\[
\frac{4(5y)}{4(3)} + \frac{3(2y + 1)}{3(4)} + \frac{6(-y + 7)}{6(2)}
\]

\[
\frac{20y}{12} + \frac{6y + 3}{12} + \frac{-6y + 42}{12}
\]

\[
\frac{20y + 6y - 6y + 3 + 42}{12}
\]

\[
\frac{20y + 45}{12}
\]

Or, I could write my answer as \(\frac{5y}{3} + \frac{15}{4}\).
G7-M3-Lesson 7: Understanding Equations

1. Check whether the given value of \(h \) is a solution to the equation. Justify your answer.

\[
4(2h - 3) = 6 + 2h \quad h = 3
\]

Because both expressions are equal to 12 when \(h = 3 \), I know that \(h = 3 \) is a solution to the equation. If the value of each expression were not equal, I would know that the number substituted in for \(h \) was not a solution.

\[
4(2(3) - 3) = 6 + 2(3) \\
4(6 - 3) = 6 + 6 \\
4(3) = 12 \\
12 = 12
\]

Felix is trying to create a number puzzle for his friend to solve. He challenges his friend to find the mystery number. “When 8 is added to one-third of a number, the result is \(-2\).” The equation to represent the mystery number is \(\frac{1}{3}x + 8 = -2 \). Felix’s friend tries to guess the mystery number. Her first guess is \(-18\). Is she correct? Why or why not?

\[
\frac{1}{3}x + 8 = -2 \\
\frac{1}{3}(-18) + 8 = -2 \\
\frac{1}{3}\left(-\frac{18}{1}\right) + 8 = -2 \\
-\frac{18}{3} + 8 = -2 \\
-6 + 8 = -2 \\
2 = -2
\]

\text{False}

\text{She is not correct. The number \(-18\) will not make a true statement. Therefore, it cannot be a solution.}
2. The sum of three consecutive integers is 57.
 a. Find the smallest integer using a tape diagram.

 Consecutive means that the numbers follow each other in order, like 4, 5, 6.

 I need to show that each number is one bigger than the number before it.

 After I subtract the "1" pieces, I am left with 3 equal sized unknown pieces, so I divide by 3 to determine the size of each unknown piece.

 \[
 57 - 3 = 54 \\
 54 \div 3 = 18
 \]

 The smallest integer would be 18.

 b. Let \(x \) represent the smallest integer. Write an equation that can be used to find the smallest integer.

 \[
 \text{Smallest integer: } x \\
 \text{2}^{\text{nd}} \text{ integer: } (x + 1) \\
 \text{3}^{\text{rd}} \text{ integer: } (x + 2)
 \]

 Sum of the three consecutive integers: \(x + (x + 1) + (x + 2) \)

 Equation: \(x + (x + 1) + (x + 2) = 57 \)

 Next, I need to show that when I add all of the integers together, I get 57.

 c. Will 18 also be a solution to the equation in part (b)?

 I will replace \(x \) with 18 and test it out.

 Here, I can see that I am finding the sum of three consecutive numbers, 18, 19, and 20.

 \[
 x + (x + 1) + (x + 2) = 57 \\
 18 + (18 + 1) + (18 + 2) = 57 \\
 57 = 57
 \]

 Yes, 18 is also a solution to the equation.
G7-M3-Lesson 8: Using If-Then Moves in Solving Equations

1. Four times the sum of three consecutive odd integers is -84. Find the integers.

Let n represent the first odd integer; then $n + 2$ and $n + 4$ represent the next two consecutive odd integers.

$$4(n + (n + 2) + (n + 4)) = -84$$
$$4(3n + 6) = -84$$
$$12n + 24 = -84$$
$$12n + 24 - 24 = -84 - 24$$
$$12n = -108$$
$$n = -9$$

I need to collect like terms and use the distributive property when solving.

I can go back to the expressions for each integer and substitute in the -9 for the value of n to determine the other consecutive integers.

The integers are -9, -7, and -5.

Consecutive odd integers would be like $1, 3, 5, ...$. Each number is 2 more than the one before.
2. A number is 11 greater than \(\frac{2}{3}\) another number. If the sum of the numbers is 31, find the numbers.

I only want to use one variable, so I need to write an expression for the first number based on how it is related to the other number.

Let \(n\) represent a number; then \(\frac{2}{3} n + 11\) represents the other number.

Rewriting some of the terms in equivalent forms, like \(n\) as \(\frac{3}{3} n\), will make it easier to collect like terms.

\[
\begin{align*}
n + \left(\frac{2}{3} n + 11 \right) &= 31 \\
\left(n + \frac{2}{3} n \right) + 11 &= 31 \\
\frac{3}{3} n + \frac{2}{3} n + 11 &= 31 \\
\frac{5}{3} n + 11 &= 31 \\
\frac{5}{3} n + 11 - 11 &= 31 - 11 \\
\frac{5}{3} n + 0 &= 20 \\
\frac{5}{3} n &= 20 \\
3 \cdot \frac{5}{3} n &= 3 \cdot 20 \\
\frac{5}{3} n &= \frac{3}{5} \cdot 20 \\
1n &= 3 \cdot 4 \\
n &= 12
\end{align*}
\]

Since the numbers sum to 31, they are 12 and 19.
3. Lukas filled 6.5 more boxes than Charlotte, and Xin filled 8 fewer than Lukas. Together, they filled 50 boxes. How many boxes did each person fill?

There are three different people mentioned here. Lukas is being compared to Charlotte, but I don’t know anything about how many Charlotte filled, so I will call it n.

Let n represent the number of boxes Charlotte filled.

Then, $(n + 6.5)$ will represent the number of boxes Lukas filled.

And $(n + 6.5) - 8$ or $(n - 1.5)$ will represent the number of boxes Xin filled.

Simplifying the expression for Xin now will make it easier to work with later.

$n + (n + 6.5) + (n - 1.5) = 50$

$n + n + n + 6.5 - 1.5 = 50$

$3n + 5 = 50$

$3n + 5 - 5 = 50 - 5$

$3n = 45$

$\left(\frac{1}{3}\right) (3n) = \left(\frac{1}{3}\right) (45)$

$n = 15$

$15 + 6.5 = 21.5$

$15 - 1.5 = 13.5$

$15 + 21.5 + 13.5 = 50$

If the total number of boxes filled was 50, then Charlotte filled 15 boxes, Lukas filled 21.5 boxes, and Xin filled 13.5 boxes.
4. A preschool teacher plans her class to include 30 minutes on the playground, $\frac{1}{4}$ of the daily class time on a craft/project, and the remaining practice time working on skills, reading, and math. The teacher planned 75 minutes for the playground and craft/project time. How long, in hours, is a day of preschool?

The duration of the entire preschool day: x hours

\[
\frac{1}{4}x + \frac{30}{60} = \frac{75}{60}
\]

The problem says to give the time in hours. I know that there are 60 minutes in an hour. I can write the minutes given in terms of hours by placing them in a fraction with 60 in the denominator.

\[
\frac{1}{4}x = \frac{3}{4}
\]

\[
\left(\frac{4}{1}\right) \left(\frac{1}{4}x\right) = \frac{3}{4} \left(\frac{4}{1}\right)
\]

\[
x = \frac{12}{4}
\]

\[
x = 3
\]

Preschool is 3 hours long each day.
G7-M3-Lesson 9: Using If-Then Moves in Solving Equations

1. Holly’s grandfather is 52 years older than her. In 7 years, the sum of their ages will be 70. Find Holly’s present age.

 Let x represents Holly’s age now in years.

<table>
<thead>
<tr>
<th></th>
<th>Now</th>
<th>7 years later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holly</td>
<td>x</td>
<td>$x + 7$</td>
</tr>
<tr>
<td>Grandfather</td>
<td>$x + 52$</td>
<td>$(x + 52) + 7$</td>
</tr>
</tbody>
</table>

The question mentions now and 7 years later. I can make a table to organize the information provided to help me create an equation to model the situation.

\[x + 7 + x + 52 + 7 = 70 \]
\[x + x + 7 + 52 + 7 = 70 \]
\[2x + 66 = 70 \]
\[2x + 66 - 66 = 70 - 66 \]
\[2x = 4 \]
\[\left(\frac{1}{2} \right) (2x) = \left(\frac{1}{2} \right) (4) \]
\[x = 2 \]

Holly’s present age is 2 years old.
2. The sum of two numbers is 63, and their difference is 7. Find the numbers.

Let \(x \) represent one of the two numbers.

Let \(63 - x \) represent the other number.

If two numbers have a sum of 63, and I take one number away from 63, I will get the other number. I can check this by adding them together.

\[
x + (63 - x) = x - x + 63 = 63
\]

\[
x - (63 - x) = 7
\]
\[
x + (-63 + x) = 7
\]
\[
x + (-63) + x = 7
\]
\[
2x - 63 = 7
\]
\[
2x - 63 + 63 = 7 + 63
\]
\[
2x = 70
\]
\[
\frac{1}{2} (2x) = \frac{1}{2} (70)
\]
\[
x = 35
\]

\[
63 - 35 = 28
\]

The numbers are 35 and 28.
3. Carmen is planning a party to introduce people to her new products for sale. She bought 500 gift bags to hold party favors and 500 business cards. Each gift bag costs 57 cents more than each business card. If Carmen’s total order costs $315, find the cost of each gift bag and business card.

Let \(b \) represent the cost of a business card.

Then, the cost of a gift bag in dollars is \(b + 0.57 \).

Because she bought 500 of both items, I can use the distributive property to write this equation.

\[
500(b + b + 0.57) = 315
\]

\[
500(2b + 0.57) = 315
\]

\[
1,000b + 285 = 315
\]

\[
1,000b + 285 - 285 = 315 - 285
\]

\[
1,000b = 30
\]

\[
\frac{1}{1,000}(1,000b) = \frac{1}{1,000}(30)
\]

\[
b = 0.03
\]

\[
0.03 + 0.57 = 0.60
\]

A business card costs $0.03, and a gift bag costs $0.60.

This question gives money in cents and money in dollars, but I need common units, so I write both of the amounts in dollars.

Because this question deals with money, it will be helpful to convert from fraction to decimal.
4. A group of friends left for vacation in two vehicles at the same time. One car traveled an average speed of 4 miles per hour faster than the other. When the first car arrived at the destination after $8 \frac{1}{4}$ hours of driving, both cars had driven a total of 1,006.5 miles. If the second car continues at the same average speed, how much time, to the nearest minute, will it take before the second car arrives?

The 1,006.5 miles doesn’t represent the total miles driven for the whole trip. Instead, this is the amount that both cars drove in $8 \frac{1}{4}$ hours. The second car hasn’t arrived at the destination yet.

Let r represent the speed in miles per hour of the faster car; then $r - 4$ represents the speed in miles per hour of the slower car.

\[
8 \frac{1}{4}(r) + 8 \frac{1}{4}(r - 4) = 1,006.5 \\
8 \frac{1}{4}(r + r - 4) = 1,006.5 \\
8 \frac{1}{4}(2r - 4) = 1,006.5 \\
33 \frac{3}{4}(2r - 4) = 1,006.5 \\
4 \frac{33}{33} \frac{3}{4}(2r - 4) = \frac{4}{33} \cdot 1,006.5 \\
2r - 4 = 122 \\
2r - 4 + 4 = 122 + 4 \\
2r = 126 \\
\left(\frac{1}{2}\right)(2r) = \left(\frac{1}{2}\right)(126) \\
r = 63
\]

The average speed of the faster car is 63 miles per hour, so the average speed of the slower car is 59 miles per hour.

\[
d = 59 \cdot 8 \frac{1}{4} \\
d = 59 \cdot \frac{33}{4} \\
d = 486.75
\]
The slower car traveled 486.75 miles in 8 \(\frac{1}{4} \) hours.

\[1,006.5 - 486.75 = 519.75 \]

The faster car traveled 519.75 miles in 8 \(\frac{1}{4} \) hours.

The slower car traveled 486.75 miles in 8 \(\frac{1}{4} \) hours.

The remainder of the slower car’s trip is 33 miles because 519.75 - 486.75 = 33.

Now that I know the rate and distance the second car still needs to travel, I can use \(d = rt \) again to solve for the time.

\[\frac{33}{59} = 59 (t) \]
\[\frac{1}{59} (33) = \frac{1}{59} (59)(t) \]
\[\frac{33}{59} = t \]

This time is in hours. To convert to minutes, multiply by 60 because there are 60 minutes in an hour.

\[\frac{33}{59} \cdot 60 = \frac{1980}{59} \approx 34 \]

The slower car will arrive approximately 34 minutes after the faster car.
5. Lucien bought a certain brand of fertilizer for his garden at a unit price of $1.25 per pound. The total cost of the fertilizer left him with $5. He wanted to buy the same weight of a better brand of fertilizer, but at $2.10 per pound, he would have been $80 short of the total amount due. How much money did Lucien have to buy fertilizer?

From the word problem, I can determine the difference in how much money is left between buying the cheaper or the more expensive product.

\[5 - (-80) = 5 + 80 = 85. \]

The difference in the costs is $85.00 for the same weight in fertilizer.

Let \(w \) represent the weight in pounds of fertilizer.

\[
2.10w - 1.25w = 85 \\
0.85w = 85 \\
\frac{85}{100}w = 85 \\
\frac{85}{100} \cdot \frac{100}{85}w = 85 \cdot \frac{100}{85} \\
1w = 100 \\
w = 100
\]

Lucien bought 100 pounds of fertilizer.

Cost = unit price \cdot weight

Cost = ($1.25 per pound) \cdot (100 pounds)

Cost = $125.00

Lucien paid $125 for 100 pounds of fertilizer. Lucien had $5 left after his purchase, so he started with $125 + $5 = $130.

If he would have had $5 left after paying, I need to add that to the $125 he paid for the fertilizer to determine how much he started with.
G7-M3-Lesson 10: Angle Problems and Solving Equations

For each question, use angle relationships to write an equation in order to solve for each variable. Determine the indicated angles.

1. In a complete sentence, describe the relevant angle relationships in the following diagram. Find the measurements of $\angle ABE$ and $\angle EBD$.

$\angle ABE$, $\angle EBD$, and $\angle DBC$ are angles on a line and their measures sum to 180°.

\[
\begin{align*}
3x + 5x + 28 &= 180 \\
8x + 28 &= 180 \\
8x + 28 - 28 &= 180 - 28 \\
8x &= 152 \\
\frac{1}{8} \cdot 8x &= \frac{1}{8} \cdot 152 \\
x &= 19
\end{align*}
\]

$m\angle ABE = 3(19^\circ) = 57^\circ$

$m\angle EBD = 5(19^\circ) = 95^\circ$

I can see that all three of these angles form a straight line, which means the sum of these three angles must be 180°.

Finding the value of x is not the answer. I need to go one step further and plug x back into the expressions and evaluate to determine the measure of each angle.
2. In a complete sentence, describe the relevant angle relationships in the following diagram. Find the measurement of $\angle WSV$.

I can see that $\angle WSV$ and $\angle ZSY$ are formed by the same two lines. So they are vertical angles and are congruent. That means $m\angle WSV$ must also be $3x^\circ$.

All of the angles in the diagram are angles at a point, and their measures sum to 360°. $\angle ZSY$ and $\angle WSV$ are vertical angles and are of equal measurement.

\[
3x + 70 + 2x + 3x + (2x + 38) + 32 = 360
\]
\[
3x + 2x + 3x + 2x + 70 + 38 + 32 = 360
\]
\[
10x + 140 = 360
\]
\[
10x + 140 - 140 = 360 - 140
\]
\[
10x = 220
\]
\[
\left(\frac{1}{10}\right) 10x = \left(\frac{1}{10}\right) 220
\]
\[
x = 22
\]

\[m\angle WSV = 3x^\circ = 3(22^\circ) = 66^\circ\]
3. The ratio of the measures of three adjacent angles on a line is 1 : 4 : 7.
 a. Find the measures of the three angles.

 \[\angle 1 = x^\circ, \angle 2 = 4x^\circ, \angle 3 = 7x^\circ \]

 \[x + 4x + 7x = 180 \]
 \[12x = 180 \]
 \[x = 15 \]

 \[\angle 1 = 15^\circ \]
 \[\angle 2 = 4(15^\circ) = 60^\circ \]
 \[\angle 3 = 7(15^\circ) = 105^\circ \]

 b. Draw a diagram to scale of these adjacent angles. Indicate the measurements of each angle.

 I can use my protractor to measure the angles accurately.

I can use the ratio to set up an expression for each angle. I also know the measure of adjacent angles on a line must have a sum of 180°.
In a complete sentence, describe the angle relationships in each diagram. Write an equation for the angle relationship(s) shown in the figure, and solve for the indicated unknown angle.

1. Find the measure of $\angle HLG$.

 $\angle BLC, \angle CLD, \text{and} \angle DLE \text{ have a sum of } 90^\circ$.

 $\angle ALK, \angle KLJ, \angle JLH, \angle HLG, \text{and} \angle GLF \text{ are angles on a line and have a sum of } 180^\circ$.

 $3x + 12x + 30 = 90$
 $15x + 30 = 90$
 $15x + 30 - 30 = 90 - 30$
 $15x = 60$
 $\left(\frac{1}{15}\right)15x = \left(\frac{1}{15}\right)60$
 $x = 4$

 I look for the small box in the corner showing me 90° angles, and I also look for angles that form a straight line because their measures have a sum of 180°.

 In order to solve for y, I must solve for x first. The value of x can be used to help determine the value of y.

 $15x + 5x + 10x + y + 6x = 180$
 $15(4) + 5(4) + 10(4) + y + 6(4) = 180$
 $60 + 20 + 40 + y + 24 = 180$
 $144 + y = 180$
 $144 - 144 + y = 180 - 144$
 $y = 36$

 $m\angle HLG = 36^\circ$
2. Find the measures of \(\angle TWV \) and \(\angle ZWV \).

The measures of \(\angle XWY \) and \(\angle YWZ \) have a sum of 90°. The measures of \(\angle TWV \), \(\angle VWZ \), and \(\angle WY \) have a sum of 180°.

\[
\begin{align*}
90 - 65 &= 25 \\
m\angle ZWY &= 25°
\end{align*}
\]

\[
\begin{align*}
24x + 7x + 25 &= 180 \\
31x + 25 &= 180 \\
31x + 25 - 25 &= 180 - 25 \\
31x &= 155 \\
\left(\frac{1}{31}\right)31x &= \left(\frac{1}{31}\right)155 \\
x &= 5
\end{align*}
\]

\[
\begin{align*}
m\angle TWV &= 24(5°) = 120° \\
m\angle VWZ &= 7(5°) = 35°
\end{align*}
\]

3. Find the measure of \(\angle BAC \).

Adjacent angles 6\(x° \) and 36° together are vertically opposite from and are equal to angle 108°.

\[
\begin{align*}
6x + 36 &= 108 \\
6x + 36 - 36 &= 108 - 36 \\
6x &= 72 \\
\left(\frac{1}{6}\right)6x &= \left(\frac{1}{6}\right)72 \\
x &= 12
\end{align*}
\]

\[
\begin{align*}
m\angle BAC &= 6(12°) = 72°
\end{align*}
\]
4. The measures of three angles at a point are in the ratio of 2 : 7 : 9. Find the measures of the angles.

I can use the ratio to write expressions to represent each of the angles.

\[m\angle A = 2x^\circ, \quad m\angle B = 7x^\circ, \quad m\angle C = 9x^\circ \]

\[
2x + 7x + 9x = 360 \\
18x = 360 \\
\left(\frac{1}{18}\right) 18x = \left(\frac{1}{18}\right) 360 \\
x = 20
\]

Since these three angles are at a point, their measures have a sum of 360°.

\[
m\angle A = 2(20^\circ) = 40^\circ \\
m\angle B = 7(20^\circ) = 140^\circ \\
m\angle C = 9(20^\circ) = 180^\circ
\]
G7-M3-Lesson 12: Properties of Inequalities

1. For each problem, use the properties of inequalities to write a true inequality statement. The two integers are -8 and -3.
 a. Write a true inequality statement.
 \[-8 < -3\]
 I can picture a number line to help me write the inequality. On a number line, -8 would be to the left of -3, which means it is less than -3.
 b. Add -4 to each side of the inequality. Write a true inequality statement.
 \[-12 < -7\]
 I need to add $-8 + (-4)$ and $-3 + (-4)$ and then write another inequality. I can always look back at Module 2 for help working with signed numbers.
 c. Multiply each number in part (a) by -5. Write a true inequality statement.
 \[40 > 15\]
 I need to multiply -8×-5 and -3×-5 and then write another inequality. I notice that I must reverse the inequality sign in order to write a true statement.
 d. Subtract $-c$ from each side of the inequality in part (a). Assume that c is a positive number. Write a true inequality statement.
 \[-8 - (-c) < -3 - (-c)\]
 \[-8 + c < -3 + c\]
 I know that adding or subtracting an integer from both sides of the inequality preserves the inequality sign.
e. Divide each side of the inequality in part (a) by $-c$, where c is positive. Write a true inequality statement.

$$\frac{-8}{-c} > \frac{-3}{-c}$$

I know that when I divide by a negative, the inequality symbol is reversed.

2. Kyla and Pedro went on vacation in northern Vermont during the winter. On Monday, the temperature was $-30^\circ F$, and on Wednesday the temperature was $-8^\circ F$.

a. Write an inequality comparing the temperature on Monday and the temperature on Wednesday.

$$-30 < -8$$

I need to compare these temperatures using less than or greater than.

b. If the temperatures felt 12 degrees colder each day with the wind chill, write a new inequality to show the comparison of the temperatures they actually felt.

$$-42 < -20$$

I could show the temperature with the wind chill by adding -12 to both sides.

c. Was the inequality symbol preserved or reversed? Explain.

The inequality symbol was preserved because the number was added or subtracted from both sides of the inequality.
G7-M3-Lesson 13: Inequalities

1. If x represents a positive integer, find the solutions to the following inequalities.
 a. $x + 9 \leq 5$

 \[
 \begin{align*}
 x + 9 &\leq 5 \\
 x + 9 - 9 &\leq 5 - 9 \\
 x &\leq -4
 \end{align*}
 \]

 There are no positive integers that are a solution.

 I notice that the problem states that x is a positive integer, which means that x could be 1, 2, 3, 4, 5, 6, ...

 I determined that the only values of x that will make the inequality true are less than or equal to -4, but there are no positive integers that are less than or equal to -4.

 I can solve inequalities similar to how I solve equations, but I remember that there are times when I have to reverse the inequality symbol.

 b. $5 + \frac{x}{7} > 12$

 \[
 \begin{align*}
 5 - 5 + \frac{x}{7} &> 12 - 5 \\
 \frac{x}{7} &> 7 \\
 7 \left(\frac{x}{7}\right) &> 7(7) \\
 x &> 49
 \end{align*}
 \]

 The possible solutions for x would include all integers greater than 49.

 If x is greater than 49, then it cannot be exactly 49. Instead, x may be 50, 51, 52, 53, ... or any larger integer.
2. Recall that the symbol \neq means not equal to. If x represents a negative integer, state whether each of the following statements is always true, sometimes true, or false.

 a. $x > 3$

 The only possible integer solutions that make this statement true are those greater than 3, which would only be positive numbers like 4, 5, 6,

 False

 b. $x \neq 0$

 This inequality states that x is not 0. This would always be true, because if x is all integers less than 0, x will never equal 0.

 Always True

 c. $x \leq 2$

 All negative numbers are less than 2, and I know x represents a negative integer, so it must be less than 2.

 Always True

 d. $x < -9$

 Although there are some negative numbers that are less than -9, there are also some negative integers that would not be less than -9, like -7 or -1.

 Sometimes True
3. Three times the smaller of two consecutive even integers increased by the larger integer is at least 26.

Consecutive even integers are two apart, so I use x to represent the first number and $x + 2$ to represent the second number.

Model the problem with an inequality, and determine which of the given values 4 and 6 are solutions. Then, find the smallest number that will make the inequality true.

$$3x + x + 2 \geq 26$$

I know that “at least” means that the sum will be 26 or more. So the sum will be greater than or equal to 26.

For 4:

$$3(4) + (4) + 2 \geq 26$$

$$12 + 4 + 2 \geq 26$$

$$18 \geq 26$$

False, 4 is not a solution.

For 6:

$$3(6) + (6) + 2 \geq 26$$

$$18 + 6 + 2 \geq 26$$

$$26 \geq 26$$

True, 6 is a solution.

To determine if a number is a solution of an inequality, I can just substitute the number in for x and evaluate to see if the result is a true statement.

$$3x + x + 2 \geq 26$$

$$4x + 2 \geq 26$$

$$4x + 2 - 2 \geq 26 - 2$$

$$4x \geq 24$$

$$x \geq 6$$

The smallest number that will make the inequality true is 6.
4. Rochelle has, at most, 74 feet of fencing to put around her veggie garden. She plans to create a rectangular garden that has a length that is 3 feet longer than the width. Write an inequality to model the situation. Then solve to determine the dimensions of the garden with the largest perimeter Rochelle can make.

Let \(x \) represent the width.

Let \(x + 3 \) represent the length.

\[
x + x + x + 3 + x + 3 \leq 74
\]

\[
4x + 6 \leq 74
\]

\[
4x + 6 - 6 \leq 74 - 6
\]

\[
4x \leq 68
\]

\[
\left(\frac{1}{4}\right)(4x) \leq \left(\frac{1}{4}\right)(68)
\]

\[
x \leq 17
\]

\[
17 + 3 = 20
\]

In order to get the largest perimeter, the width would be 17 feet, and the length would be 20 feet.
1. Ethan earns a commission of 5% of the total amount he sells. In addition, he is also paid $380 per week. In order to stick to his budget, he needs to earn at least $975 this week. Write an inequality with integer coefficients for the total sales needed to earn at least $975, and describe what the solution represents.

Let the variable \(p \) represent the purchase amount.

Because he has to earn at least $975, I know that I should use greater than or equal to 975 because Ethan needs to earn $975 or more.

Since percent means out of 100, I can show 5% as \(\frac{5}{100} \).

\[
\frac{5}{100}p + 380 \geq 975
\]

\[
(100)\left(\frac{5}{100}p\right) + 100(380) \geq 100(975)
\]

\[
5p + 38000 \geq 97500
\]

\[
5p + 38000 - 38000 \geq 97500 - 38000
\]

\[
5p \geq 59500
\]

\[
\left(\frac{1}{5}\right)(5p) \geq \left(\frac{1}{5}\right)(59500)
\]

\[
p \geq 11900
\]

Ethan’s total sales must be at least $11,900 if he wants to earn $975 or more.

2. Katie and Kane were exercising on Saturday. Kane was riding a bicycle 12 miles per hour faster than Katie was walking. Katie walked for \(3\frac{1}{2} \) hours, and Kane bicycled for 2 hours. Altogether, Katie and Kane traveled no more than 57 miles. Find the maximum speed of each person.

<table>
<thead>
<tr>
<th></th>
<th>Rate</th>
<th>Time</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kane</td>
<td>(x + 12)</td>
<td>2</td>
<td>(2(x + 12))</td>
</tr>
<tr>
<td>Katie</td>
<td>(x)</td>
<td>(3\frac{1}{2})</td>
<td>(\frac{3}{2}x)</td>
</tr>
</tbody>
</table>

I can organize all the information in a table and use the relationship \(d = rt \).
2015-16
Lesson 14
Solving Inequalities

7 \cdot 3

\[
2(x + 12) + 3 \frac{1}{2} x \leq 57
\]
\[
2x + 24 + 3 \frac{1}{2} x \leq 57
\]
\[
\frac{5}{2} x + 24 \leq 57
\]
\[
\frac{5}{2} x + 24 - 24 \leq 57 - 24
\]
\[
\frac{5}{2} x \leq 33
\]
\[
\frac{11}{2} x \leq 33
\]
\[
\left(\frac{2}{11} \right) \left(\frac{11}{2} x \right) \leq (33) \left(\frac{2}{11} \right)
\]
\[
x \leq 6
\]

\[2 + 12 = 18\]

The maximum speed Katie was walking was 6 miles per hour, and the maximum speed Kane was riding the bike was 18 miles per hour.

3. Systolic blood pressure is the higher number in a blood pressure reading. It is measured as the heart muscle contracts. Ramel is having his blood pressure checked. The nurse told him that the upper limit of his systolic blood pressure is equal to a third of his age increased by 117. If Ramel is 42 years old, write and solve an inequality to determine what is normal for his systolic blood pressure.

Let \(p\) represent the systolic blood pressure in millimeters of mercury (mmHg).

Let \(a\) represent Ramel’s age.

\[p \leq \frac{1}{3} a + 117, \text{ where } a = 42.\]

\[p \leq \frac{1}{3} (42) + 117\]
\[p \leq 14 + 117\]
\[p \leq 131\]

The normal upper limit for Ramel is 131, which means that Ramel’s systolic blood pressure should be 131 mmHg or lower.
G7-M3-Lesson 15: Graphing Solutions to Inequalities

1. Doug has decided that he should read for at least 15 hours a week. On Monday and Tuesday, his days off from work, he reads for a total of $6 \frac{1}{4}$ hours. For the remaining 5 days, he reads for the same amount of time each day. Find t, the amount of time he reads for each of the 5 days. Graph your solution.

Let t represent the time, in hours, he spends reading on each of the remaining days.

\[
5t + 6 \frac{1}{4} \geq 15
\]

\[
5t + 6 \frac{1}{4} - 6 \frac{1}{4} \geq 15 - 6 \frac{1}{4}
\]

\[
5t \geq 8 \frac{3}{4}
\]

\[
\left(\frac{1}{5}\right)(5t) \geq \left(\frac{1}{5}\right) \left(8 \frac{3}{4}\right)
\]

\[
t \geq \left(\frac{1}{5}\right) \left(\frac{35}{4}\right)
\]

\[
t \geq \frac{35}{20}
\]

\[
t \geq 1.75
\]

Doug must read for 1.75 hours or more on each of the remaining days.

Graph:

Because this problem says at least 15 hours, I know that he must read 15 hours or more. I use the greater than or equal to symbol in my inequality to represent this relationship.

Because I want to include 1.75 as a possible solution, I use a solid circle. The arrow indicates that all numbers greater than 1.75 are also included in the solution.
2. The length of a parallelogram is 70 centimeters, and its perimeter is less than 360 centimeters. Cherise writes an inequality and graphs the solution below to find the width of the parallelogram. Is she correct? If yes, write and solve the inequality to represent the problem and graph. If no, explain the error(s) Cherise made.

Let \(w \) represent the width of the parallelogram.

\[
2w + 2(70) < 360 \\
2w + 140 < 360 \\
2w + 140 - 140 < 360 - 140 \\
2w < 220 \\
\left(\frac{1}{2}\right)(2w) < \left(\frac{1}{2}\right)(220) \\
w < 110
\]

Yes, Cherise is correct.

The width must be less than 110 in order for the perimeter to be less than 360. To graph this relationship, I do need an open circle because 110 is not included in the solution.